
AsyncMDSL: a domain-specific
language for modeling message-based

systems

Candidate: GIACOMO DE LIBERALI

Supervisor: Prof. Dr. OLAF ZIMMERMANN
University of Applied Sciences of Eastern Switzerland

(HSR FHO), Rapperswil, Switzerland

Co-supervisor: Prof. Dr. ANTONIO BROGI

A thesis presented for the degree of
MSc in Computer Science

Department of Computer Science
University of Pisa

24 July 2020

Abstract

Different solutions exist to standardize how RESTful APIs are described,
such as OpenAPI or RAML. Those solutions do not fit, however, in de-
scribing message-driven systems. AsyncAPI is an emerging specification —
started as an adaptation of OpenAPI — that can model asynchronous APIs
and is thus suitable for describing message-based systems. We intend to
present a new, more expressive domain-specific language that derives its ab-
stract syntax from the state of the art patterns and concepts described in
the Enterprise Integration Patterns book by Gregor Hohpe and Bobby Woolf.
AsyncMDSL, presented in this project, aims at modeling message-driven sys-
tems using a human-friendly language, allowing a concise yet expressive rep-
resentation. A converter that produces enriched AsyncAPI documents start-
ing from AsyncMDSL is also presented, which ensures that AsyncMDSL can
effectively generate scaffolding code exploiting existing tools available on the
market.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Vision . 3
1.3 Terminology . 4

2 Related Work 5
2.1 Academic Literature . 5
2.2 Existing Modeling Frameworks 6

2.2.1 Apache Camel . 7
2.2.2 AsyncAPI . 8

3 Requirements 15
3.1 User Stories . 15

3.1.1 US-1: Model a message-based system 15
3.1.2 US-2: Integrate with AsyncAPI 16
3.1.3 US-3: Message Channels 16
3.1.4 US-4: Messages . 18
3.1.5 US-5: Return Address 19
3.1.6 US-6: Correlation Identifier 19
3.1.7 US-7: Message Sequence 19
3.1.8 US-8: Message Expiration 19
3.1.9 US-9: Message Endpoints 19
3.1.10 US-10: Competing Consumers 19
3.1.11 US-11: Polling Consumer 20
3.1.12 US-12: Event-Driven Consumer 20
3.1.13 US-13: Selective Consumer 20
3.1.14 US-14: Durable Subscriber 20
3.1.15 US-15: Message Brokers 20
3.1.16 US-16: Specify protocol-specific information 20

i

Contents

3.1.17 US-17: Server security 21
3.2 Non-functional Requirements 21

3.2.1 NFR-1: Usability . 21
3.2.2 NFR-2: Expressiveness 21
3.2.3 NFR-3: Reliability . 21
3.2.4 NFR-4: Specification’s complexity 21
3.2.5 NFR-5: AsyncAPI conversion time 22
3.2.6 NFR-6: Maintainability and supportability 22
3.2.7 NFR-7: License . 22

4 Language Design and Tool Implementation 23
4.1 Background: Standard MDSL Language 23

4.1.1 Language elements . 24
4.1.2 Data types . 25
4.1.3 Endpoint skeleton . 28
4.1.4 Provider skeleton . 28
4.1.5 Client skeleton . 29

4.2 AsyncMDSL Language . 30
4.2.1 AsyncMDSL example 32

4.3 AsyncMDSL Language Features 32
4.3.1 Extending a grammar 32
4.3.2 ServiceSpecification . 34
4.3.3 ChannelContract . 35
4.3.4 Message Brokers . 42
4.3.5 Message Endpoints . 44

4.4 Static Verification Rules (linter) 46
4.5 Generating AsyncAPI . 47

4.5.1 MDSL data types to JSON Schema specification 50
4.5.2 AsyncMDSL to AsyncAPI mapping 54

5 Loan Broker Example 56
5.1 Modeling a scenario . 56

6 Discussion 62
6.1 AsyncMDSL and AsyncAPI 62

6.1.1 Missing features . 62
6.1.2 Specifications comparison 65
6.1.3 AsyncMDSL design . 67

ii

Contents

6.2 Requirements Evaluation . 67
6.2.1 Requirements coverage 67

7 Conclusions 71
7.1 Future Work . 72

Bibliography 77

Appendices 83

A Language Reference 83

B Loan Broker Conversion 91

iii

Chapter 1

Introduction

1.1 Context

Event processing is becoming the paradigm of choice in many enterprise and
reactive applications. Enterprise-grade solutions benefit from the loose cou-
pling asynchronous event-driven architectures offer, and reactive systems rely
on messages to react to changes. Standardize how to describe asynchronous
systems denotes a critical factor in promoting style guidelines and team co-
operation. Every framework proposes its language, often incompatible, to
face similar underlying problems from a different perspective. A modeling
language that abstracts product-specific details, such as data representa-
tion formats or transport protocols, can be used to describe event-driven
systems in a consistent set of rules, yet offering the possibility to target dif-
ferent frameworks. A system’s description created with a common modeling
language can be fed to a transformation algorithm that produces a product-
specific representation, using the base model as a single source of truth.
In this thesis, we focus on creating a modeling language to describe asyn-
chronous APIs, favoring a design-first approach, which helps in determining
an effective design. Delivering APIs which share common behaviors, pat-
terns, and consistent interfaces ease the work of both software architects and
APIs consumers. The text-based modeling language we propose, in form of
a domain-specific-language, extends the Microservice Domain-Specific Lan-
guage (MDSL) [59] [29], used to describe synchronous APIs. It enjoys an
abstraction both over data formats and transport protocols, offering a sound
basement upon which an extension to model asynchronous APIs can be built.
Existing specification languages, like OpenAPI [26] or RAML [38], employ
well-known formats (such as JSON or YAML) but are bound to RESTful

1

1.1 Context

services, and are not suitable to describe asynchronous systems. A modeling
language that targets those systems is AsyncAPI [24], an emerging speci-
fication inspired by OpenAPI. AsyncAPI favors simplicity, offering a plain
interface to model APIs, which, in an asynchronous event-based context,
take the form of message channels. Message channels are one of the pillars
of event-driven and message-driven architectures. The Enterprise Integra-
tion Patterns (EIPs) book [23] offers an established set of recurring solutions
that can be employed in designing message-driven systems. It also intro-
duces a naming convention for components and a clear description of how
they interact. A modeling language suitable for describing asynchronous
APIs can exploit these patterns as language concepts, as they are common
to all frameworks dealing with message-driven systems. AsyncAPI targets
event-driven systems that slightly differ from message-based systems adopted
by Enterprise Integration Patterns, preventing their proper representation.
The Reactive Manifesto does a great job defining the difference between the
event-driven approach chosen by AsyncAPI and the message-based architec-
ture lying under EIPs:

[. . .] A message is an item of data that is sent to a specific destina-
tion. An event is a signal emitted by a component upon reaching
a given state. In a message-driven system addressable recipients
await the arrival of messages and react to them, otherwise lying
dormant. In an event-driven system notification listeners are at-
tached to the sources of events such that they are invoked when
the event is emitted. This means that an event-driven system fo-
cuses on addressable event sources while a message-driven system
concentrates on addressable recipients. [54]

Our domain-specific language targets the modeling of message-based systems,
focusing on creating common models that can subsequently be used to gener-
ate product-specific representations. The transformation phase presented in
this thesis focuses on generating AsyncAPI compliant documents, enriching
them with patterns that can not be modeled using that specification, allow-
ing us to benefit from the available tools and community that AsyncAPI has
gained over the last couple of years, yet exploiting the expressiveness and
features our new language offers.

2

1.2 Vision

1.2 Vision

In this thesis, we present a domain-specific modeling language designed to
describe message-based systems. AsyncMDSL, our proposal, is character-
ized by an expressive abstract syntax inspired by the Enterprise Integration
Patterns, allowing an integration architect to find a close correspondence be-
tween the concepts defined in [23] and AsyncMDSL’s language constructs.
The value of a modeling language, especially in a design-first approach, goes
beyond the mere system description. Once a system’s model is available,
one would expect some tools that permit the execution of the model, or that
can extract some documentation to illustrate the available interfaces. In our
asynchronous APIs context, this execution could be realized by generating
scaffolding code that targets a technology stack (such as Node.js or Java and
a concrete protocol, such as AMQP), and that contains all the information
represented in the model. Given that the automatic generation of code or
documentation is out of the scope of this work, and that several tools already
exist, we chose to exploit AsyncAPI’s available tooling to achieve the objec-
tive. Instead of taking care of generator templates, once a model created with
our language has been modeled, our conversion algorithm will create the cor-
responding AsyncAPI compliant file, which will be used by AsyncAPI’s tools
to generate scaffolding code and documentation.

After the consolidation of some terminology, in the following chapter,
we provide an overview of related work in the field of modeling integration
solutions with Enterprise Integration Patterns [23] and a brief introduction
to existing modeling frameworks and specifications as Apache Camel and
AsyncAPI. We then proceed listing the requirements that our domain-specific
language has to fulfill in order to model message-based systems effectively.
Once requirements have been introduced, we dive into the DSL’s technical
implementation, providing some background information on the base lan-
guage that we extended, and we preset the features supported by our new
language. Finally, we showcase a classic example first described in the origi-
nal EIPs book, and we demonstrate how it can be modeled with our language.
We later conclude by specifying missing features and critical points of our
proposal and the future work that can derive from it.

3

1.3 Terminology

1.3 Terminology

We introduce a set of terms used all across this thesis to fix concepts unam-
biguously.

• Application: an application is any computer program capable of both
producing or consuming a message. It may be written in different
programming languages as long as they support the protocol used by
the broker.

• Message: a message is a piece of data exchanged via a channel between
brokers and applications. A message contains a payload and may also
contain headers. The payload contains application-specific data that
must be serialized into a format (such as JSON).

• Message Broker : a message broker is a piece of infrastructure in charge
of receiving messages and delivering them to those who have shown
interest, exploiting a protocol.

• Message Producer : a message producer (or publisher) is an applica-
tion, connected to a broker, that is creating messages and addressing
them to channels. A producer may be publishing to multiple channels
depending on the server and the protocol.

• Message Consumer : a message consumer (receiver, or subscriber) is
an application that connects to a broker via a supported protocol and
consumes messages from one or more channels, depending on the broker
and the protocol.

• Channel : a channel is an addressable component, exposed by a broker,
for the organization of messages. Producers send messages to channels,
and consumers consume messages from channels. A broker may support
many channel instances allowing messages with different content to be
addressed to different channels.

• Protocol : a protocol is the mechanism by which messages are exchanged
between an application and a channel. Example protocols are AMQP,
MQTT or Kafka.

4

Chapter 2

Related Work

2.1 Academic Literature

Parameterisable EAI patterns

[45] and [42] introduce the notion of Parameterisable EAI pattern (PEP).
They allow integration architects to reuse the guidelines captured through
EIPs and configure (i.e., parameterize) them so that they fit a specific inte-
gration problem, after passing a transformation phase. In the transformation
algorithm proposed in [43], PEPs act as a platform-independent model that
serves as a base for generating executable artifacts. GENIUS, a visual editor
for modeling PEPs, is used to model an integration solution that can even-
tually be transformed into various target platforms (such as Apache Camel).

EIPs to BPEL

[58] exploits PEPs — extending [42] — to support other types of patterns
categories, such as Message Routing and System Management. It leverages
a mapping between Enterprise Integration Patterns and BPEL processes [13]
and illustrates an example of how this mapping can be accomplished to fi-
nally generate a BPEL model that can be deployed and executed on the
ActiveBPEL engine. [39] presents another example of formal mapping be-
tween integration semantics represented by EIPs and BPMN syntax and its
execution semantics.

5

2.2 Existing Modeling Frameworks

Modeling examples

[31] evaluates EIPs’ implementation inside Apache Camel [3] and proposes
an approach able to generate executable Java code from the modeled inte-
gration scenario. [44] presents an example of how EIPs can be realized inside
WebSphere, exploiting the built-in XML visual editor.

Even if visual representations could help define components interactions,
this benefit slowly vanishes as the model complexity grows. A graphical
representation of a system should be eventually generated starting from a
specification document, rather than the other way. A visual modeler should,
instead, be combined with the underlying language.

2.2 Existing Modeling Frameworks

Several solutions currently exist to model RESTful APIs, such as OpenAPI
[26] (formerly Swagger [51]) or RAML [38], but none of them are designed to
describe message-based systems. Our AsyncMDSL language is not the first
attempt to model message-driven systems, but rather an alternative proposal
of what the market offers: AsyncAPI, which has overlapping but different
design goals. AsyncAPI aims at defining models highly compatible with
OpenAPI, favoring simplicity over expressiveness. AsyncMDSL, instead, fo-
cuses on expressiveness exploiting the domain’s native components, EIPs, as
language concepts.
Other relevant projects, such as Apache Camel [5] or Mule ESB [27], exist;
they are not specification languages to describe messaging systems, but inte-
gration frameworks based on known Enterprise Integration Patterns (EIPs)
[23]. Both products indeed offer interfaces for EIPs, providing commonly
needed implementations and connectivity to different transport APIs. Camel
also proposes a domain-specific language to wire patterns and transports to-
gether. We decided to present Apache Camel rather than other alternatives
products as it is open-source and its fluent API design influenced the syntax
of AsyncMDSL’s grammar.

6

2.2 Existing Modeling Frameworks

2.2.1 Apache Camel

Apache Camel is an Java-based open-source integration framework based on
the Enterprise Integration Patterns [23]. It can run as a standalone appli-
cation, embedded as a library in a Spring [48] project or run natively in
a Kubernetes [18] cluster. In a Camel-based application, one can create
endpoints and connect these endpoints with routes. An endpoint is an ad-
dressable component provided by Camel. Some examples of the supported
endpoint technologies are JMS queues, web services, files or FTP servers.
The routing engine is core part of Camel: routes contain the flow and logic
of integration between different systems. A route is a step-by-step movement
of a message from an input queue, through arbitrary types of decision mak-
ing — such as filters and routers — to a destination queue. Camel provides
different ways for an application developer to specify routes. One can, for
example, specify route information in an XML file or through Java DSL. The
Camel’s Java DSL is a library that offers fluent APIs that simulate the ex-
perience of a domain-specific language, yet having a Java syntactic baggage.� �

1 public void configure() {
2 from("queue:c").choice()
3 .when(header("foo")
4 .isEqualTo("bar"))
5 .to("queue:d")
6 .when(header("foo")
7 .isEqualTo("cheese"))
8 .to("queue:e")
9 .otherwise()
10 .to("queue:f");
11 }� �

Listing 1: Example of Camel’s Java DSL

The Camel documentation compares Java DSL favorably against the alter-
native of configuring routes and endpoints in an XML-based configuration
file. In particular, Java DSL is less verbose than its XML counterpart. Be-
sides, many integrated development environments (IDEs) provide an auto-
completion feature in their editors, thereby easing developers’ work. Defining
how messages are produced, consumed or routed to endpoints can also be
represented exploiting annotations in Java beans (Listing 2),

7

2.2 Existing Modeling Frameworks

� �
1 public class Foo {
2

3 @Consume(uri = "activemq:my.queue")
4 @RecipientList
5 public Bar doSomething(
6 @Header("JMSCorrelationID") String correlationID,
7 @Body String body) {
8

9 // process the inbound message here
10 }
11 }� �

Listing 2: Example of Camel’s bean integration

or by using a REST styled DSL that allows clients to interact with a message
broker using standard HTTP verbs such as GET or POST.

2.2.2 AsyncAPI

AsyncAPI is an emerging specification language for defining asynchronous
APIs. It was initially developed due to the lack of tooling in the message-
driven space [7], where none of existing standards such as [26] and [38] were
suitable. This was leading every company that had to deal with message-
based systems to create custom solutions to keep code and documentation
in sync. AsyncAPI exploits JavaScript Object Notation (JSON) format as
specification language and provides a set of tools that range from code to doc-
umentation generation. The language emerged thanks to its simplicity; the
learning curve is low for a developer coming from other specifications such as
OpenAPI, and the popular JSON format is already familiar to a considerable
number of developers. The possibility to define a platform-agnostic model is,
in part, the same factor that helped the diffusion of OpenAPI, from which
AsyncAPI took inspiration. Furthermore, AsyncAPI allows the definition of
protocol-agnostic models, avoiding the specification-protocol coupling, as it
is happening with OpenAPI and HTTP. As is [26], AsyncAPI clients can
understand and consume services without the knowledge of server imple-
mentation or server code access. Given a model, indeed, tools provided by
AsyncAPI ecosystem allow generation of documentation in different formats,
such a browsable HTML website, as well as boilerplate code to quickly get
started with a new project.

8

2.2 Existing Modeling Frameworks

The specification is capable of grasping several aspects of a message-
driven system; it is possible to define:

• channels
• operations available in channels
• Data Transfer Objects (DTOs) schemas
• protocol-specific binding
• servers definitions
• server security policies

It does not allow, however, the definition of endpoints — message produces
and message consumers — , which have a radical influence on the behavior
of the system. The impossibility to express endpoints, for example stating
which are idempotent 1 and for which some sort of state must be kept, could
lower the entire model’s expressiveness, resulting in a lack of information for
users of the services. Another critical factor to consider when adopting a spec-
ification language is the ability to define models that use constructs derived
from the context where the specification will be applied, in our case messag-
ing solutions. As often happens when designing systems, indeed, the design
of a message-driven system benefits from a set of community accepted pat-
terns and conventions. The reference point for message-driven systems is the
Enterprise Integration Patterns [23] book, where a set of design patterns for
common situations that arise in message-driven designs are defined, together
with a naming convention. Those patterns remind the GoF’s Design Patterns
[21] for what concerns the object-oriented programming. The conjunction be-
tween patterns and naming convention uniquely identifies components of a
system that can, in this way, rapidly be shared unambiguously. AsyncAPI,
however, lacks the expressiveness EIPs can offer, and adopts an abstract
syntax that does recall an event-driven system rather than a message-based
system, preventing the proper representation of EIPs.

1A message consumer is idempotent if it can handle duplicate messages.

9

2.2 Existing Modeling Frameworks

Example

AsyncAPI documents are represented using JSON; YAML (YAML Ain’t
Markup Language [57]), being a superset of JSON, can be used as well to
represent any AsyncAPI document. Examples provided in this thesis use
YAML as it is more readable and it supports block literals and comments.� �

1 channels:
2 tasks/new:
3 publish:
4 # this description uses block literals
5 description: |
6 Emits when a new task is available to be computed.
7 message:
8 payload:
9 type: object
10 properties:
11 id:
12 type: integer
13 description: The task identifier.� �

Listing 3: AsyncAPI channel definition example

In Listing 3 we define a new channel with the AsyncAPI specification. We
declare that exists the channel tasks/new (line 2) that produces a message
(line 7) which payload is an object with a property of type integer named
id (lines 8-13). The information contained in this model allow a message
consumer to infer only the type of the payload it will eventually receive. A
message consumer can not understand whether it will be competing with
other message consumers, nor if the received message would require a reply.
The semantic of a channel is, indeed, not expressed, and consumers miss
crucial information on the proper usage of available interfaces.

Some of the EIPs, such as Correlation Identifier and Message Expiration,
can be represented with this specification, while some others, such as Invalid
Message Channel or Request-Reply Channel, can not or can be only par-
tially represented. Some patterns can be modeled exploiting the AsyncAPI
so-called ”bindings”. Even if it is protocol-agnostic, AsyncAPI offers a mech-
anism — a binding — that aims defining protocol-specific information. This
allows users to define a general model that can be enriched with additional
metadata to make AsyncAPI aware of the actual protocol and/or software
topology.

10

2.2 Existing Modeling Frameworks

� �
1 channels:
2 user/signup:
3 publish:
4 bindings:
5 amqp:
6 expiration: 100000
7 replyTo: user.signedup� �

Listing 4: AsyncAPI AMQP binding

If we consider another example (Listing 4), we notice how we can define a
channel with a Message Expiration (line 6) and a Message Reply (line 7).
Those information are contained in an AMQP [49] binding object, which
means that the current channel is made available by an AMQP broker. If
we consider the Request-Reply Message pattern, we can rapidly notice that
a Message Consumer interested a message coming from the channel can not
understand what the message reply should look like; it only knows that it has
to send the reply message through the channel user.signedup. Given this
situation, the missing information must be reported somewhere, more likely
in the user.signedup channel’s documentation. In Table 1 we provide a
summary of the EIPs that can expressed using AsyncAPI and AsyncMDSL.

11

2.2 Existing Modeling Frameworks

T
ab

le
1:

A
sy

n
cA

P
I

v
s

A
sy

n
cM

D
S
L

E
IP

s
su

p
p

or
t

E
IP

p
a
tt

e
rn

s
A

sy
n
cA

P
I

su
p
p

o
rt

A
sy

n
cM

D
S
L

su
p
p

o
rt

M
o
d
el

S
em

an
ti

c
M

o
d
el

S
em

an
ti

c
P

oi
n
t-

to
-P

oi
n
t

C
h
an

n
el

Y
E

S
N

O
Y

E
S

Y
E

S
P

u
b
li
sh

-S
u
b
sc

ri
b

e
C

h
an

n
el

Y
E

S
N

O
Y

E
S

Y
E

S
D

at
at

y
p

e
C

h
an

n
el

Y
E

S
Y

E
S

Y
E

S
Y

E
S

In
va

li
d

M
es

sa
ge

C
h
an

n
el

P
ro

to
co

l-
sp

ec
ifi

c
Y

E
S

Y
E

S
D

ea
d

L
et

te
r

C
h
an

n
el

P
ro

to
co

l-
sp

ec
ifi

c
Y

E
S

Y
E

S

M
es

sa
gi

n
g

C
h
an

n
el

s

G
u
ar

an
te

ed
D

el
iv

er
y

C
h
an

n
el

P
ro

to
co

l-
sp

ec
ifi

c
Y

E
S

Y
E

S
C

om
m

an
d

M
es

sa
ge

N
O

N
O

Y
E

S
Y

E
S

D
o
cu

m
en

t
M

es
sa

ge
N

O
N

O
Y

E
S

Y
E

S
E

ve
n
t

M
es

sa
ge

N
O

N
O

Y
E

S
Y

E
S

R
eq

u
es

t-
R

ep
ly

P
ar

ti
al

Y
E

S
Y

E
S

R
et

u
rn

A
d
d
re

ss
P

ro
to

co
l-

sp
ec

ifi
c

Y
E

S
Y

E
S

C
or

re
la

ti
on

Id
en

ti
fi
er

Y
E

S
Y

E
S

Y
E

S
Y

E
S

M
es

sa
ge

S
eq

u
en

ce
N

O
N

O
Y

E
S

Y
E

S

M
es

sa
ge

C
on

st
ru

ct
io

n

M
es

sa
ge

E
x
p
ir

at
io

n
P

ro
to

co
l-

sp
ec

ifi
c

Y
E

S
Y

E
S

C
om

p
et

in
g

C
on

su
m

er
s

N
O

N
O

Y
E

S
Y

E
S

P
ol

li
n
g

C
on

su
m

er
N

O
N

O
Y

E
S

Y
E

S
E

ve
n
t-

D
ri

ve
n

C
on

su
m

er
N

O
N

O
Y

E
S

Y
E

S
S
el

ec
ti

ve
co

n
su

m
er

N
O

N
O

Y
E

S
Y

E
S

M
es

sa
gi

n
g

E
n
d
p

oi
n
ts

D
u
ra

b
le

su
b
sc

ri
b

er
N

O
N

O
Y

E
S

Y
E

S

12

2.2 Existing Modeling Frameworks

SWOT analysis

In the next table we also provide a Strengths, Weaknesses, Opportunities,
and Threats (SWOT) overview of AsyncAPI. Born in 2017, and primarily
maintained by two developers, it is gaining more attention from the commu-
nity thanks to the similarity it shares with OpenAPI and some big companies
supporting it, such as Slack, that mentioned AsyncAPI in the description of
some of its APIs2.

Positive Negative

In
te

rn
al

E
x
te

rn
al

Strenghts

• Protocol agnostic

• Language agnostic

• Powerful tooling

• Open source

Weaknesses

• Can not model API end-
points

• Can not model well-known
patterns

• Does not enforce channel-
s/messages semantics

• Readibility

Opportunities

• De-facto community stan-
dard

• Familiar specification
(similar to OpenAPI) and
format (JSON/YAML)

• Backed by companies (eg.
Slack and Salesforce)

Threats

• Not yet mature and with
few competitors

• Not supported yet by mes-
sage oriented middleware

Figure 1: AsyncAPI SWOT analysis

2https://github.com/slackapi/slack-api-specs/blob/master/events-api/slack events
api async v1.json

13

https://github.com/slackapi/slack-api-specs/blob/master/events-api/slack_events_api_async_v1.json
https://github.com/slackapi/slack-api-specs/blob/master/events-api/slack_events_api_async_v1.json

2.2 Existing Modeling Frameworks

Although it is gaining some popularity, AsyncAPI still suffers from low read-
ability, provoked by the chosen format, as well as a lack of expressiveness:
APIs miss some semantic information that could be very useful for their
clients. A channel or message purpose needs to be deducted either from
comments or domain knowledge. AsyncAPI ecosystem is also not as vast as
rival products’ ones, such as OpenAPI. Indeed only a few message-oriented
middlewares support it (e.g., MuleSoft [27]), and no different real alternatives
exist.

The requirements described in the next chapter are focused on highlight-
ing the semantic constructs that our domain-specific language should be able
to express, as well as non-functional requirements defined to assess the de-
livered project’s intrinsic properties, such as the specification complexity or
its license.

14

Chapter 3

Requirements

This chapter discusses the requirements of the Microservice Domain-specific
Language (MDSL) extension, presented in this project, should cover. Be-
sides the functional requirements described as User Stories, the chapter also
presents the non-functional requirements AsyncMDSL has to fulfill. Require-
ments come from the need for modeling common patterns for asynchronous,
message-based systems. They are derived by analyzing AsyncAPI, selected
Enterprise Integration Patterns (EIPs), and messaging platforms such as
Apache Kafka and RabbitMQ.

3.1 User Stories

User stories (US) [1] — usually employed in agile methodologies [34] — are
a popular method for representing requirements using a simple template.
Each user story expresses a single functional behavior of a product, and once
implemented, it should contribute to its value, independently of the order of
implementation. Different templates can be used to denote stories, but the
more popular [32] is the original one [1]:

As a 〈role〉, I want 〈goal〉, [so that 〈benefit〉]

and we as well will be using this template to express our requirements.

3.1.1 US-1: Model a message-based system

As messaging integration architect, I want to specify the API contracts of my
asynchronous message-based system, so that message producers and message

15

3.1 User Stories

consumers are loosely coupled in time dimension and can exchange messages
in an interoperable manner.

Variant

As a service provider, I want to make consumers of my message-based system
aware of the available interfaces, so that they would autonomously be able
to interact with it.

3.1.2 US-2: Integrate with AsyncAPI

As a messaging integration architect, I want the APIs contract of a mes-
saging system described with AsyncMDSL to be converted into AsyncAPI,
while maintaining the expressiveness that AsyncMDSL provides. Patterns
not representable in AsyncAPI will be inserted as comments in a generated
AsyncAPI document. The conversion must target AsyncAPI version 2.0.0.

Variant

As a project manager, I want to exploit existing tooling available on the
market to generate code and documentation, so that developers will take
less time to build the system.

3.1.3 US-3: Message Channels

As a messaging integration architect, I want to model a Message Channel.
Since message channels tend to be static and defined at design time, I need
a proper way to make applications that produce shared data have a way to
communicate with those that wish to consume it. A message channel could
be one, or a combination of, the following channel types:

• Point-to-Point Channel
• Publish-Subscribe Channel
• Datatype Channel
• Invalid Message Channel
• Dead Letter Channel
• Guaranteed Delivery Channel

Each channel type is described as separate user story in the following sections.

16

3.1 User Stories

US-3.1: Point-to-Point Channel

As a message integration architect, I want to model a Point-to-Point Channel
so that the producer knows that each message it will send over this channel
type is received by only a single consumer.

US-3.2: Publish-Subscribe Channel

As a messaging integration architect, I want to model a Publish-Subscribe
Channel so that producer knows that each message it will send over this
channel type is received as a copy by all interested consumers.

US-3.3: Datatype Channel

As a messaging integration architect, I want to model a Datatype Channel so
that producers and consumers know the type of the messages’ payload that
flows through this channel. Messages could contain headers that must be, as
well, possible to model.

US-3.4: Invalid Message Channel

As a messaging system administrator, I want to model an Invalid Message
Channel, a special channel for messages that could not be processed by their
receivers, so that receivers can handle messages they do not consider valid
and put them into a monitored channel.

US-3.5: Dead Letter Channel

As a messaging system administrator, I want to model a Dead Letter Chan-
nel, a special channel for messages that could not be delivered by the mes-
saging system, so that messages will not be silently dropped, but instead put
into a monitored channel.

US-3.6: Guaranteed Delivery Channel

As a messaging integration architect, I want to model a Guaranteed Delivery
Channel so that messages are always stored on disk until they are successfully
delivered and acknowledged by consumers.

17

3.1 User Stories

3.1.4 US-4: Messages

As a messaging integration architect, I want to model the messages that will
flow through channels so that the semantic of each message is explicit. A
message could be one of the following types:

• Command Message
• Document Message
• Event Message
• Request Message
• Reply Message

Each message type is described as separate user story in the following sec-
tions.

US-4.1: Command Message

As a messaging integration architect, I want to model a Command Message
so that producer knows that it is explicitly invoking a known procedure in
another application.

US-4.2: Document Message

As a messaging integration architect, I want to model a Document Message
so that producer explicitly transfers a data structure between applications.

US-4.3: Event Message

As a messaging integration architect, I want to model an Event Message so
that producer explicitly communicates the occurrence of an event to con-
sumers.

US-4.4: Request-Reply Message

As a messaging integration architect, I want to model Request-Reply mes-
sages so that an explicit flow of messages is defined between requester and
replier. A pair of Request-Reply messages are used to create a bidirectional
data transfer: the Request Message should contain a ReturnAddress to tell
the replier where to send the reply. The Reply Message should contain a
Correlation Identifier that specifies which request this reply is for.

18

3.1 User Stories

3.1.5 US-5: Return Address

As a messaging integration architect, I want to model the return address of
a message so that a replier can send back the reply to the requester.

3.1.6 US-6: Correlation Identifier

As a messaging integration architect, I want to model the correlation between
messages so that a receiver can infer a chain of related messages.

3.1.7 US-7: Message Sequence

As a messaging integration architect, I want to model a message sequence so
that I can break data into a message-size chunk. Each message chunk should
contain a sequence identification to allow a later reconstruction.

3.1.8 US-8: Message Expiration

As a messaging integration architect, I want to model message expiration,
so that once the time for which a message is viable passes, and the message
still has not been consumed, then the message will expire and the messaging
system’s consumers will ignore it.

3.1.9 US-9: Message Endpoints

As a messaging integration architect, I want to model one or more Message
Endpoints, so that I can describe clients of a messaging system and their
interactions with available Message Brokers.

3.1.10 US-10: Competing Consumers

As a messaging integration architect, I want to identify a channel as ca-
pable of managing competing consumers, so that subscribers are explicitly
informed. A channel with this attribute is a Point-to-Point Channel with
multiple consumers, where only one of them will receive a particular mes-
sage.

19

3.1 User Stories

3.1.11 US-11: Polling Consumer

As a messaging integration architect, I want to model a Polling Message
Consumer, so that the consumer knows that it has to explicitly make a call
when it wants to receive a message.

3.1.12 US-12: Event-Driven Consumer

As a messaging integration architect, I want to model an Event-Driven Mes-
sage Consumer, so that the consumer knows that it will handle messages as
soon as they are delivered to the channel.

3.1.13 US-13: Selective Consumer

As a messaging integration architect, I want to specify the conditions under
which a Message Consumer will receive a message, so that it only receives
messages that match its criteria.

3.1.14 US-14: Durable Subscriber

As a messaging integration architect, I want to identify a Message Consumer
as durable, so that it will avoid missing messages while it is not listening for
them. The messaging system will save messages and deliver them as soon as
the consumer is listening.

3.1.15 US-15: Message Brokers

As a messaging integration architect, I want to model one or more Message
Brokers, specify their protocol (e.g., AMQP, Kafka, or MQTT) and the ad-
dress under which they will expose the Message Channels, so that clients
know how to exchange messages.

3.1.16 US-16: Specify protocol-specific information

As a messaging system administrator, I want to specify protocol-specific in-
formation so that the model can be enriched with information about the
protocol and/or the software topology. For instance, knowing that the Mes-
sage Broker will expose channels through Kafka, I could specify the name of
the consumer group a Message Consumer belongs to.

20

3.2 Non-functional Requirements

3.1.17 US-17: Server security

As a messaging system administrator, I want to specify, for each Message Bro-
ker, the authentication mechanism, so that Message Endpoints know how to
authenticate. AsyncMDSL will support user-password and API key authen-
tications.

3.2 Non-functional Requirements

Non-functional requirements (NFRs) express criteria used to assess the op-
eration of a system rather than specific behaviors [22], which are instead
defined as user stories in above the section 3.1.

3.2.1 NFR-1: Usability

A messaging system architect should be able to understand examples written
in AsyncMDSL within 15 to 30 minutes. Following the provided examples
and tutorials, he/she should be ready to start creating its model within one
hour.

3.2.2 NFR-2: Expressiveness

AsyncMDSL’s grammar should represent EIPs using an easy to understand,
self-explanatory, syntax, reducing the need for further code documentation.

3.2.3 NFR-3: Reliability

The provided tools should have no crashes nor data losses during the con-
version between AsyncMDSL and AsyncAPI. Any grammar constructs that
could result in an invalid AsyncAPI document generation must be statically
checked to inform the user and provide a possible fix. In case an error occurs
during the generation, the user must be informed.

3.2.4 NFR-4: Specification’s complexity

The complexity of a specification can be roughly estimated by the number of
its grammar rules. The number of AsyncMDSL’s grammar rules, considering
also the standard MDSL, should not exceed 100 rules.

21

3.2 Non-functional Requirements

3.2.5 NFR-5: AsyncAPI conversion time

The conversion between AsyncMDSL and AsyncAPI should last at most two
second per channel. The conversion of the AsyncMDSL equivalent of the
demo project1 should complete within two seconds.

3.2.6 NFR-6: Maintainability and supportability

The project should have clear setup instructions and mechanisms to sup-
port the maintainability of the code. This mechanisms could include static
code analysis (linters), continuous integration and development pipelines, a
well-defined git strategy (Gitflow) and tools to generate documentation (eg.
Javadoc). The code should be clean and understandable and follow a well-
known style convention (eg. Google Java Style Guide) as well as be properly
documented.

3.2.7 NFR-7: License

Since the standard MDSL is distributed under the Apache License 2.0, its
extension grammar also has to adopt the same license.

1https://www.asyncapi.com/docs/tutorials/streetlights

22

https://www.asyncapi.com/docs/tutorials/streetlights

Chapter 4

Language Design and Tool Implementation

AsyncMDSL1, the language proposed in this thesis, extends the Microservice
Domain-Specific Language (MDSL), adding the possibility to model asyn-
chronous message-based systems. From the homepage of the project we can
read that:

[. . .] MDSL’s syntax is inspired and driven by the domain model
and concepts of Microservice API Patterns, featuring endpoints,
operations, and data representation elements. [59]

Considering the context where AsyncMDSL will be adopted, some of MDSL’s
concepts needed to shift to best fit message-driven naming convention defined
in [23], and avoid terminology confusions. Leveling AsyncMDSL’s terminol-
ogy with the concepts defined in [23], integration architects will find a close
correspondence between EIPs and our language constructs.

4.1 Background: Standard MDSL Language

The standard MDSL language, the base grammar of the extension proposed
in this thesis, has been developed using Ecplise Xtext [14], a framework for
development of programming languages and domain-specific languages. The
framework uses ANTLR [36] for generating the parser and provides features
such as a typed Abstract Syntax Tree (AST), scoping, unparsing2 and valida-
tion. Xtext uses in-memory EMF [50] models for representing the generated

1The full grammar will be soon available at
https://github.com/Microservice-API-Patterns/MDSL-Specification

2The process of constructing text from an AST

23

https://github.com/Microservice-API-Patterns/MDSL-Specification

4.1 Background: Standard MDSL Language

AST, and we will use Ecore diagrams [19], as well as code examples, to intro-
duce the language structure. Once some background context on the standard
MDSL language has been provided, we will introduce the AsyncMDSL gram-
mar extension.

MDSL editor

Eclipse IDE Xtext framework

Validation (linter)

Generators

Formatter

Figure 2: MDSL is distributed as an Eclipse plugin that provides an edi-
tor, a linter and a generator (under development) that produces OpenAPI
documents.

4.1.1 Language elements

MDSL defines a base structure upon which AsyncMDSL is built on top. It
supports the API Description pattern [61], exploiting the concepts of End-
point, Operation, Client and Provider. An API description features one or
more endpoints which, in turn, expose operations that either expect or deliver
messages. A message carries a header and a payload.

In the introductory example3 of MDSL (listing 5), we can already notice
many features of the language. We are modeling an API with a single end-
point HelloWorldEndpoint that exposes a single operation called SayHello.
This operation accepts a single scalar string value "D<string>" as input,
and returns a Data Transfer Object (DTO) called SampleDTO as output.
The character "D" that comes before the type "string" represents one of
the possible Element Stereotypes defined in [61], and indicates the role of
the parameter content: "D" data, "ID" identifier, "L" link or "MD" metadata.
In addition to the endpoint type HelloWorldEndpoint, an API client and an

3https://microservice-api-patterns.github.io/MDSL-Specification

24

https://microservice-api-patterns.github.io/MDSL-Specification

4.1 Background: Standard MDSL Language

API provider are abstractly defined. Note that no protocol information are
supplied, since MDSL is not bound to any transport protocol.� �

1 API description HelloWorldAPI
2

3 data type SampleDTO { "id": ID<int>, "message": D<string> }
4

5 endpoint type HelloWorldEndpoint
6 exposes
7 operation SayHello
8 expecting payload D<string>
9 delivering payload SampleDTO
10

11 API provider HelloWorldAPIProvider
12 offers HelloWorldEndpoint
13 at endpoint location "https://microservice-api-patterns.org"
14 via protocol RESTful_HTTP
15

16 API client HelloWorldAPIClient
17 consumes HelloWorldEndpoint� �

Listing 5: MDSL basic example

In this basic example, we can understand the structure of any MDSL docu-
ment, a single root object containing different components:

• datatypes, the definitions of Data Transfer Objects (DTOs)
• endpoints
• providers
• and finally clients.

The concrete syntax is inspired from the Microservice API Patterns defined
in [61]. A minimal MDSL document should include endpoint addresses,
operation names, structure and meaning of the request and response message
representations.

4.1.2 Data types

MDSL provides a JSON-like syntax to express rich data models, either as
anonymous objects or as named entities that can be reused. The Structure
Patterns from [61] compose the base of the type system. The Representation
Elements [61] supported are:

• Atomic Parameter: a single, primitive data element (eg. a scalar value)

25

4.1 Background: Standard MDSL Language

• Atomic Parameter List: a representation of multiple primitive data
elements

• Parameter Tree: a hierarchical data structure that can define nested
Representation Elements

• Parameter Forest: one or more nested data structures that cannot be
represented well in a single Parameter Tree

As introduced in [29], the Identifier-Role-Type (IRT) triples "name": D<string>

defines a single, primitive data element, the AtomicParameter pattern, where:

• the identifier "name" corresponds to a variable name
• the role "D" can be any element stereotype defined in [61]: "D" data,
"ID" identifier, "MD" metadata or "L" link. Others stereotypes, such as
RequestBundle or Pagination, can be specified prefixing the data type
with <<Stereotype>>, e.g.:

<<Embedded_Entity>> "customerId": ID<int>

• the type <string> is either a basic type, such as string, int, long,
double, or a nested structure.

Nesting is expressed in a block-like syntax: {. . . {. . . }} and constitutes the
Parameter Tree pattern. Since MDSL is designed to support agile modeling
practices [34], it offers partial specification as first-class language concept
[59]. If a type of an object is indeed unknown, a generic parameter can be
used, as shown in line 2 of Listing 6. Items collections are represented by
appending some modifiers as ∗ or + to a type definition. The ∗modifier turns
a type definition into a collection of zero or more elements, while + into a
collection with at least one element. Finally, parameters’ optionality can be
modeled by ? modifier, that indicates the parameter is optional. Parameters
are mandatory by default, but the ! modifier can be used to explicitly ensure
that a value will be present.� �

1 data type SingleNodeParameter "atomicParameter": D<string>
2 data type GenericSingleNodeParameter "genericParamater": P
3 data type SingleNodeParameterRef "typeRef": SingleNodeParameter
4 data type SingleNodeParameterAlias SingleNodeParameter� �

Listing 6: SingleParameterNode example

26

4.1 Background: Standard MDSL Language

� �
1 data type AtomicParameterList (
2 "identifier": ID<int>,
3 "listOfFloats": D<float>*
4)� �

Listing 7: AtomicParameterList example� �
1 data type ParameterTree {
2 "level1": {
3 "level2": {
4 "listOfFloats": D<float>+,
5 "typeReference": SingleNodeParameter
6 }
7 }?
8 }� �

Listing 8: ParameterTree example� �
1 data type ParameterForest [
2 {
3 "prop1": D<string>,
4 "list": (
5 "ref1": AnotherDatatype, // reference existing data types
6 "myNumber": D<int>
7),
8 "subTree": {
9 "identifier": ID<int>
10 }
11 };
12

13 "namedTree": {
14 "treeStringAttribute": D<string>
15 }
16]� �

Listing 9: ParameterForest example

27

4.1 Background: Standard MDSL Language

4.1.3 Endpoint skeleton

A MDSL’s endpoint, a description of a system’s interface, follows the follow-
ing skeleton (from [59]):� �

1 endpoint type <name>
2 version x.y.z // semantic versioning information (optional)
3 serves as <role_enum> // MAP tag(s) (optional)
4 exposes
5 operation <name>
6 with responsibility <resp_enum> // MAP tag (optional)
7 expecting
8 headers [...] // optional
9 payload [...] // mandatory
10 delivering
11 headers [...] // optional
12 payload [...] // mandatory
13 reporting
14 [...] // error handling such as fault elements
15 // or response codes� �

Listing 10: MDSL endpont skeleton

AsyncMDSL channels definitions follow a similar structure, trying to mimic
the experience of using standard MDSL. Providing a consistent structure
across the whole grammar is an important aspect to consider when designing
an extension.

4.1.4 Provider skeleton

An API provider offers one or more endpoint contracts, specifying at which
address location it will expose them and under which protocol. A basic
provider follow the skeleton:� �

1 API provider <name>
2 offers <serviceSpecification> // reference
3 at endpoint location <endpointAddress>
4 via protocol <endpointProtocol>
5 under conditions [...] // optional
6 provider governance <evolutionPattern> // Evolution MAP, optional� �

28

4.1 Background: Standard MDSL Language

4.1.5 Client skeleton

API Clients are endpoints’ consumers, and they need only to specify which
endpoints they interact with and under which protocol.� �

1 API client <name>
2 consumes <endpointRef> // reference
3 from <providerRef> // reference, optional
4 via protocol <endpointProtocol> // optional� �

29

4.2 AsyncMDSL Language

4.2 AsyncMDSL Language

The AsyncMDSL document structure is the same as the original MDSL’s
one, excepts for the components’ names. To align MDSL’s components with
the naming convention in [23], AsyncMDSL proposes a new terminology:

• endpoint type → message channel
• provider → message broker
• client → message endpoint

This naming guarantees a tight correspondence between EIPs names and
language constructs, preventing an overlapping between unrelated concepts,
such as Message Endpoints in AsyncMDSL and endpoints as operations con-
tainer in standard MDSL.

Every AsyncMDSL document has thus a root object, serviceSpecification,
which represents a description of a single message-based system. A service-
Specification contains a list of Message Channels, of Message Brokers and
finally a list of Message Endpoints. A simplified AsyncMDSL’s Ecore class
diagram is depicted in Figure 3.

30

4.2 AsyncMDSL Language

co
nt

ra
ct

s
[1

..*
]

cl
ie

nt
s

[0
..*

]

pr
ov

id
er

s
[0

..*
]

m
es

sa
ge

 [1
..1

]

m
es

sa
ge

 [1
..1

]

m
es

sa
ge

 [1
..1

]

ex
po

se
s

[1
..*

]
ch

an
ne

ls
 [0

..*
]

br
ok

er
 [1

..1
]

O
ne

W
ay

C
ha

nn
el

de
sc

rip
tio

n:
 s

tri
ng

pa
th

: C
ha

nn
el

Pa
th

W
ith

Pa
ra

m
s

w
he

re
C

la
us

es
: A

rra
y<

W
he

re
C

la
us

es
>

bi
nd

in
gs

: B
in

di
ng

Pa
ra

m
s

co
nt

ra
ct

 [1
..1

]

ch
an

ne
ls

Fr
om

Br
ok

er
s

[0
..*

]

ch
an

ne
l [

1.
.1

]

M
es

sa
ge

Br
ok

er

na
m

e:
 s

tri
ng

de
sc

rip
tio

n:
 s

tri
ng

M
es

sa
ge

na
m

e:
 s

tri
ng

de
sc

rip
tio

n:
 s

tri
ng

ty
pe

: M
es

sa
ge

Ty
pe

pa
yl

oa
d:

 e
le

m
en

tS
tru

ct
ur

e

he
ad

er
: e

le
m

en
tS

tru
ct

ur
e

M
es

sa
ge

En
dp

oi
nt

na
m

e:
 s

tri
ng

de
sc

rip
tio

n:
 s

tri
ng

ty
pe

s:
 A

rra
y<

M
es

sa
ge

En
dp

oi
nt

Ty
pe

>

ro
le

s:
 R

es
ou

rc
eR

ol
e

As
yn

cC
on

su
m

pt
io

nW
ith

Pr
ot

oc
ol

Bi
nd

in
g

It
gr

ou
ps

 c
ha

nn
el

s
w

ith
ou

t a
 M

es
sa

ge
 B

ro
ke

r r
ef

er
en

ce
.

w
he

re
C

la
us

es
: A

rra
y<

C
on

su
m

pt
io

nW
he

re
C

la
us

es
>

bi
nd

in
gs

: P
ro

to
co

lB
in

di
ng

s

co
nv

er
sa

tio
nT

yp
e

[1
..1

]

ch
an

ne
ls

 [1
..*

]

As
yn

cE
nd

po
in

t

lo
ca

tio
n:

 s
tri

ng

pr
ot

oc
ol

Bi
nd

in
g:

 P
ro

to
co

lB
in

di
ng

se
cu

rit
yP

ol
ic

y:
 S

ec
ur

ity
Po

lic
y

re
qu

es
t [

1.
.1

]

R
eq

ue
st

R
ep

ly
C

ha
nn

el

A
R

eq
ue

st
-R

ep
ly

C
ha

nn
el

 is
 c

om
po

se
d

by
tw

o
di

ffe
re

nt
 c

ha
nn

el
s:

 th
e

re
qu

es
t a

nd
 th

e
re

pl
y.

R
eq

ue
st

C
ha

nn
el

na
m

e:
 s

tri
ng

pa
th

: C
ha

nn
el

Pa
th

W
ith

Pa
ra

m
s

w
he

re
C

la
us

es
: A

rra
y<

W
he

re
C

la
us

es
>

bi
nd

in
gs

: B
in

di
ng

Pa
ra

m
s

re
pl

y
[1

..1
]

C
ha

nn
el

C
on

tra
ct

A
C

ha
nn

el
C

on
tra

ct
 re

pr
es

en
ts

 a
 s

in
gl

e
O

ne
W

ay
C

ha
nn

el
 o

r a
 R

eq
ue

st
-

R
ep

ly
C

ha
nn

el
.

na
m

e:
 s

tri
ng

ty
pe

: A
rra

y<
C

ha
nn

el
Ty

pe
>

As
yn

cC
on

su
m

pt
io

nF
ro

m
Br

ok
er

It
gr

ou
ps

 c
ha

nn
el

s
co

ns
um

ed
 fr

om
 th

e
sa

m
e

M
es

sa
ge

Br
ok

er
.

w
he

re
C

la
us

es
: A

rra
y<

C
on

su
m

pt
io

nW
he

re
C

la
us

es
>

bi
nd

in
gs

: P
ro

to
co

lB
in

di
ng

s

se
rv

ic
eS

pe
ci

fic
at

io
n

It
is

 th
e

ro
ot

 g
ra

m
m

ar
 ru

le
.

na
m

e:
 s

tri
ng

ve
rs

io
n:

 s
tri

ng

de
sc

rip
tio

n:
 s

tri
ng

di
re

ct
io

n:
 d

ire
ct

io
nL

is
t R

ep
ly

C
ha

nn
el

na
m

e:
 s

tri
ng

pa
th

: C
ha

nn
el

Pa
th

W
ith

Pa
ra

m
s

w
he

re
C

la
us

es
: A

rra
y<

W
he

re
C

la
us

es
>

bi
nd

in
gs

: B
in

di
ng

Pa
ra

m
s

F
ig

u
re

3:
S
im

p
li
fi
ed

A
sy

n
cM

D
S
L

’s
E

co
re

cl
as

s
d
ia

gr
am

31

4.3 AsyncMDSL Language Features

4.2.1 AsyncMDSL example

The Example 5 applied in a message-based context, and converted in AsyncMDSL,
is reported in the next listing.� �

1 API description HelloWorldAsyncAPI
2

3 data type SampleDTO { "id": ID<int>, "message": D<string> }
4

5 channel SayHello
6 of type PUBLISH_SUBSCRIBE
7 on path "/public/sayHello"
8 produces message HelloMessage
9 delivering payload SampleDTO
10

11 message broker HelloWorldAmqpProvider
12 exposes HelloWorldAsyncAPI
13 at endpoint "amqp.example.com"
14 via protocol AMQP
15

16 message endpoint HelloWorldAmqpClient
17 uses from HelloWorldAmqpProvider:
18 SayHello� �

Listing 11: AsyncMDSL example

In Listing 11 we define an API which has a single channel, SayHello to which
many Message Endpoints can consume from. The channel is a Publish-
Subscribe Channel and delivers a SampleDTO as output to subscribers. A
Message Broker exposes the SayHello channel via AMQP protocol, and a
Message Endpoint uses the channel from this message provider. A Message
Endpoint using a channel means that if that channel is producing messages
(as in this case), the Message Endpoint will act as a consumer of that channel,
subscribing to it, and waiting for messages.

4.3 AsyncMDSL Language Features

4.3.1 Extending a grammar

To extend the base MDSL language we need to extend its grammar. The
Xtext-based grammar is composed by several rules that can be modified. To
support a new syntax, we can either directly extend existing rules to support

32

4.3 AsyncMDSL Language Features

it, or we can add new alternative rules that can recognize the new syntax.
For instance, suppose having a rule like the following:� �

1 provider:
2 'API' 'provider' name=ID
3 ('contained' 'in' parent=[provider])?
4 // [...]
5 ;� �

Listing 12: Base rule that we want to extend

If the new syntax requires

1. the introduction of new keywords for invoking the rule (eg. allowing to
instantiate a provider with ’message broker’ keywords instead of ’API
provider’)

2. the elimination of the parent provider
3. the backwards compatibility of the specification

we can adopt different approaches to support this new requirements.

Directly extending rules

The first approach could be to modify the existing rule to support both
the ’API provider’ and ’message broker’ keywords. After that, to ensure
that parent provider is used only if the instance is initialized with the ’API
provider’ keyword, we would need to create a verification rule that will be
invoked at runtime by the framework. A runtime rule is a non-other that a
linter rule that statically analyzes the source code.� �

1 provider:
2 (apiProvider='API' 'provider'
3 | messageBroker='message' 'broker') name=ID
4 ('contained' 'in' parent=[provider])?
5 // [...]
6 ;� �

Listing 13: Directly extended rule

Even if this approach could actually work, it does not scale to complex rules
and requires lots of validation checks at runtime, which is not something a
grammar should go for. A grammar should indeed statically force to write
meaningful language constructs. To statically enforce meaningful constructs
we can adopt the extension proposal described next.

33

4.3 AsyncMDSL Language Features

Adding new alternative rules

Instead of directly modifying rules to support the new syntax, we can add a
new rule that represents new syntax’s requirements,� �

1 MessageBroker:
2 'message' 'broker'
3 // note also the removal of the parent provider
4 // [...]
5 ;� �

Listing 14: New rule for new syntax

and apply a modification to the parent rule. The previous provider rule is
indeed contained in another rule.� �

1 serviceSpecification:
2 // [...]
3 providers+=provider*
4 // [...]
5 ;� �

Listing 15: provider parent rule

Editing the parent serviceSpecification rule as the following� �
1 serviceSpecification:
2 // [...]
3 providers+=(provider | MessageBroker)*
4 // [...]
5 ;� �

Listing 16: New parent rule that supports both syntaxes

ensures that at the same time the backwards compatibility will be guar-
anteed, and that the new syntax will be recognized. This approach allows
defining a scalable grammar that enforces statically meaningful constructs
(meaning that the new syntax rules can not be mixed in unwanted ways).

4.3.2 ServiceSpecification

A serviceSpecification is the only root object of any AsyncMDSL document.
It represent a whole message-based system or a logically connected portion
of it. It should contain all the information that a service provider intend to
offer to its clients. In the message-driven context, such information comprise

34

4.3 AsyncMDSL Language Features

Message Channels and Message Brokers. AsyncMDSL has been developed
taking into account the possibility to model entire systems, and entire sys-
tems are composed also by Message Endpoints. Hence, a serviceSpecification
contains also the definition of Message Endpoints that interact with the ex-
posed channels from Message Brokers.� �

1 serviceSpecification:
2 'API' 'description' name=ID
3 ('version' svi=semanticVersioningIdentifier)?
4 ('description' description=STRING)?
5 ('usage' 'context' reach=visibility
6 'for' direction+=directionList)?
7 types+=dataContract*
8 contracts+=(endpointContract | ChannelContract)+
9 providers+=(provider | MessageBroker)*
10 clients+=(client | MessageEndpoint)*
11 ;� �

Listing 17: Simplified AsyncMDSL root grammar rule

Listing 18 shows the serviceSpecification language concept in action, which is
defined in the above Listing 17 and covers — once it has been populated with
all the children components — the user story US-1: Model a message-based
system. The serviceSpecification rule is provided by standard MDSL, and it
has been extended to support our new requirements.� �

1 API description AsyncMDSLServiceSpecification
2 version "1.0.0"
3 description "
4 This preamble represent a description of a system.
5 "
6 // A preamble is followed by the definitions of:
7 // - datatypes
8 // - channels
9 // - brokers
10 // - endpoints� �

Listing 18: AsyncMDSL serviceSpecification example

4.3.3 ChannelContract

ChannelContract components contained in the serviceSpecification represent
a Message Channel. Each ChannelContract can model either a single Message

35

4.3 AsyncMDSL Language Features

Channel or a Request-Reply Message flow. Each ChannelContract has one
or more types, that comprise:

• Point to Point: exactly one receiver will receive the message sent over
this channel

• Publish-Subscribe: the message sent over this channel is broadcasted
to all receivers subscribed to it

• Datatype: all messages sent over this channel have the same payload
and header structures

• Invalid Message: messages sent over this channel are messages which
receivers were not be able to handle

• Dead Letter: messages sent over this channel are messages that the
messaging system was not able to deliver

• Guaranteed Delivery: messages sent over this channel are ensured to
be persisted, preventing their loss if the messaging system fails.

Each of these types represents the corresponding Message Channel pattern
described in section 3.1.3.� �

1 ChannelContract:
2 'channel' name=ID
3 ('of' 'type' types+=ChannelType (',' types+=ChannelType)*)?
4 conversationType=(RequestReplyChannel | OneWayChannel)
5 ;� �

Listing 19: AsyncMDSL ChannelContract grammar rule

The grammar rule allows the definition of multiple types for a single Chan-
nelContract, without taking into account that not all values are a valid com-
bination. For instance, if we declare a Message Channel as a Point-to-Point
Channel, we could potentially mark it as also as a Publish-Subscribe Channel,
creating a syntactically valid structure that is logically incorrect. This type
of validation is thus required, but performed at runtime, exploiting Xtext
semantic checks, described in section 4.4 Static Verification Rules (linter).� �

1 channel MyAwsomeChannel
2 of type POINT_TO_POINT, DATA_TYPE, GUARANTEED_DELIVERY
3 // OneWayChannel or RequestReplyChannel� �

Listing 20: AsyncMDSL ChannelContract

Listing 20 shows the common shared structure between Message Channels
and Request-Reply Channels. The inner content of the ChannelContract rule

36

4.3 AsyncMDSL Language Features

is delegated to OneWayChannel or RequestReplyChannel rules respectively
defined in section 4.3.3 and section 4.3.3. This rule fulfills the US-3: Message
Channels.

One-way channel

In Listing 21 we define the grammar rule for a single Message Channel. Each
Message Channel has a path on which the broker expects the input or delivers
the output. This path could also contain parameters that need to be deter-
mined at runtime (described in below section 4.3.3). Each Message Channel
can produce messages, consume messages, or both, even if consuming from
and producing to the same channel is not a best practice. Finally, a Message
Channel can contain some other information, such as the Message Expiration
policy of a message. This kind of information is represented inside the list of
WhereClauses.� �

1 OneWayChannel:
2 (('description' description=STRING)? &
3 'on' path=ChannelPathWithParams)
4 (subscribe?='accepts' | publish?='produces') message=Message
5 ('where' whereClauses+=WhereClauses
6 (',' whereClauses+=WhereClauses)*)?
7 ('bindings' 'for' protocol=TransportProtocol
8 bindings=BindingParams)?
9 ;� �

Listing 21: AsyncMDSL OneWayChannel grammar rule� �
1 channel MyAwsomeChannel
2 of type POINT_TO_POINT, DATA_TYPE, GUARANTEED_DELIVERY
3 on path "channel-logical-path"
4 produces message MyAwsomeMessage
5 delivering payload {
6 "myAwsomeProperty": D<string>
7 }
8 where
9 MESSAGE_EXPIRES in 60s
10 bindings for AMQP {
11 "queue": {
12 "name": "my-queue-name"
13 }
14 }� �

Listing 22: AsyncMDSL OneWayChannel

37

4.3 AsyncMDSL Language Features

Channel path

The logical channel path, a parameterizable string, is used to identify a
channel inside a Message Broker. It is possible to define a channel path inside
the channel definition or the Message Broker. If the path were defined in the
Message Broker, it would have been specified as a property of the relation
between a broker and a channel, meaning that different brokers expose the
same channel under different logical paths. If brokers need to expose the
same channel under the same path, they would need to specify the channel
path multiple times. Given that a logical path can be considered equivalent
to a RESTful API’s URI, we decided that it had to be a property of the
channel rather than a property of a broker’s relation with it. An application
that uses a channel, indeed, references it by its logical path. Even if two
channels, with the same input/output schemas, can be considered equal from
the application’s perspective, if their logical path is different, they would no
longer be interchangeable.� �

1 ChannelPathWithParams:
2 'path' path=STRING
3 ('with'
4 params+=BasicParameterWithDescription
5 (',' params+=BasicParameterWithDescription)?
6)?
7 ;� �

Listing 23: AsyncMDSL channel path grammar rule� �
1 channel BanksLoansInsightsChannel
2 of type PUBLISH_SUBSCRIBE
3 on path "banks/${bankId}/loans" // channel path with parameter
4 with bankId: int, "The bank from which the loan
5 has been requested."
6 description "Subscribe to be notified when
7 a new loan request happens."
8 produces message NewLoanRequested
9 delivering payload LoanNotificationDto� �

Listing 24: AsyncMDSL channel path with parameters example

Parameters are embedded in the path using the syntax ${parameterName},
and a semantic verification rule will notify the lack of parameter definitions
in the path, if needed.

38

4.3 AsyncMDSL Language Features

Message’s payload and header

Each channel either expects (consumes) or delivers (produces) a message. A
message is a representation of the data that will be carried through a channel,
and it is composed of payload, header, and type. A message type represents
one of the following user stories:

• US-4.1: Command Message
• US-4.2: Document Message
• US-4.3: Event Message

while the possibility to model message payload and header covers US-3.3:
Datatype Channel.� �

1 Message:
2 'message' name=ID
3 ('description' description=STRING)?
4 (deliveringPayload?='delivering' |
5 expectingPayload?='expecting')
6 payload=Payload
7 ;
8

9 Payload:
10 schema=dataTransferRepresentation
11 ('as' messageType=MessageType)?
12 ;
13

14 dataTransferRepresentation:
15 ('headers' headers=elementStructure)?
16 'payload' payload=elementStructure
17 ;
18

19 enum MessageType:
20 COMMAND_MESSAGE | EVENT_MESSAGE | DOCUMENT_MESSAGE
21 ;� �

Listing 25: AsyncMDSL message grammar rules� �
1 channel MyChannel
2 of type DATA_TYPE
3 on path "channel-logical-path"
4 accepts message MyIncomingMessage
5 expecting
6 headers CommonHeaders
7 payload MyDocumentDto as DOCUMENT_MESSAGE

39

4.3 AsyncMDSL Language Features

� �
Listing 26: AsyncMDSL Message example

Request-Reply channel

Request-Reply messages require distinct logical channels to communicate:
one channel for the request and one channel for the reply. A RequestReply-
Channel allows the definition of both logical channels, where each of them
contains the payload they expect/deliver. Also, in this type of communica-
tion, it might be useful to specify further information, such as the Correlation
Identifier of a message. As per the OneWayChannel, this information is rep-
resented into the list of WhereClauses.� �

1 RequestReplyChannel:
2 request=RequestChannel
3 reply=ReplyChannel
4 ;
5

6 RequestChannel:
7 'request' 'message' name=ID
8 (('description' description=STRING)? &
9 'on' path=ChannelPathWithParams)
10 'expecting' payload=Payload
11 ('where' whereClauses+=WhereClauses
12 (',' whereClauses+=WhereClauses)*)?
13 ('bindings' 'for' protocol=TransportProtocol
14 bindings=BindingParams)?
15 ;
16

17 ReplyChannel:
18 'reply' 'message' name=ID
19 (('description' description=STRING)? &
20 'on' path=ChannelPathWithParams)
21 'delivering' payload=Payload
22 ('where' whereClauses+=WhereClauses
23 (',' whereClauses+=WhereClauses)*)?
24 ('bindings' 'for' protocol=TransportProtocol
25 bindings=BindingParams)?
26 ;� �

Listing 27: AsyncMDSL Request-Reply Messages grammar rule

RequestReplyChannel covers US-4.4: Request-Reply Message.

40

4.3 AsyncMDSL Language Features

� �
1 data type WakeUpDto {
2 "deviceId": ID<int>,
3 "wakeUp": D<bool>
4 }
5

6 channel RequestReplyMessageChannel
7 of type POINT_TO_POINT
8 request message WakeUpChannelRequest
9 on path "devices/wakeup"
10 expecting payload WakeUpDto as COMMAND_MESSAGE
11 reply message WakeUpChannelReply
12 on path "devices/${deviceId}/wakeup/reply"
13 with deviceId: int, "The id of the device
14 that received the command"
15 delivering payload { "success": D<bool> }� �

Listing 28: AsyncMDSL Request-Reply Message flow

Where clauses

The WhereClauses construct allows to specify further conditions on Message
Channels. It permits to represent Message Expiration, Message Sequence
and Correlation Identifier EIPs, thus covering user stories defined in sections
3.1.6, 3.1.7 and 3.1.8.� �

1 WhereClauses:
2 MessageExpireWhereClause
3 | SequenceIdWhereClause
4 | CorrelationIdWhereClause
5 ;
6 MessageExpireWhereClause:
7 'MESSAGE_EXPIRES' 'in' messageExpire=INT
8 messageExpireUnit=MessageExpireUnit
9 ;
10 SequenceIdWhereClause:
11 'SEQUENCE_ID' 'is' source=STRING
12 ;
13 CorrelationIdWhereClause:
14 'CORRELATION_ID' 'is' source=STRING
15 ;� �

Listing 29: AsyncMDSL WhereClauses grammar rules

41

4.3 AsyncMDSL Language Features

Correlation Identifier and Message Sequence indicate a property of a message
that can be respectively used to trace the chain of messages or understand
messages’ order. The property is specified following the JSON Pointer [17]
specification. It expects a root value, in our case the message payload or
header, and then it specifies a list of reference tokens used to reconstruct
the path of the property inside the root value. In our DSL it follows the
template:

$message.(payload | header)#/path/to/the/target/property

WhereClauses can be seen in action in the following listing.� �
1 channel LoanBrokerChannel
2 of type GUARANTEED_DELIVERY, POINT_TO_POINT
3 request message LoanRequest
4 on path "loan-broker/request"
5 expecting
6 payload { requestId: ID<int>, content: P }
7 reply message LoanReply
8

9 on path "loan-broker/reply"
10 delivering
11 headers CommonHeaders
12 payload LoanReplyDto
13 where
14 CORRELATION_ID is "$message.payload#/requestId",
15 MESSAGE_EXPIRES in 60m� �

Listing 30: AsyncMDSL WhereClauses in action

4.3.4 Message Brokers

A Message Broker, that can be seen as a service provider, is in charge of
defining which channels it offers and under which conditions. A Message
broker can offer different serviceSpecifications at different locations, under
different protocols and with different Service Level Agreement (SLA). For
each serviceSpecification component offered by a Message Broker, protocol-
specific information — bindings — can be also specified, as well as some
basic information about the security policy.

42

4.3 AsyncMDSL Language Features

� �
1 MessageBroker:
2 'message' 'broker' name=ID
3 ('description' description=STRING)?
4 'exposes' epl+=AsyncEndpoint+ (',' epl+=AsyncEndpoint)?
5 ;
6

7 AsyncEndpoint:
8 contract=[serviceSpecification]
9 'at' 'location' location=STRING
10 pb=ProtocolBinding
11 ('bindings' bindings=BindingParams)?
12 ('policy' name=ID 'realized' 'using'
13 (securityPolicy=OASSecurity | other=STRING)
14 ('in' securityPolicyExpression=STRING)?)?
15 ;� �

Listing 31: AsyncMDSL Message Broker grammar rules

In the following example we are defining a Message Broker which exposes
the same serviceSpecification under different locations and protocols. Fur-
thermore, the service exposed under MQTT contains some protocol-specific
information and a security policy.� �

1 message broker MyMessageBroker
2 exposes
3 MyServicesSpecification
4 at location "tcp://mqtt.myapp.com:1883"
5 via protocol MQTT
6 bindings {
7 "lastWill": {
8 "qos": 2,
9 "retain": false
10 }
11 }
12 policy AuthenticatedUsersOnly
13 realized using API_KEY in "$message.header#/apiKey",
14

15 MyServicesSpecification
16 at location "amqp://my.app.com"
17 via protocol AMQP� �

Listing 32: AsyncMDSL Request-Reply Message flows

The Message Broker grammar rule defined above allows to cover US-15: Mes-
sage Brokers and US-16: Specify protocol-specific information.

43

4.3 AsyncMDSL Language Features

4.3.5 Message Endpoints

Message Endpoints are clients that connect to Message Brokers. Message
Endpoints can use one or more Message Brokers, and for each one of them,
they can specify individual Message Channel configurations. Such channel
configurations can consist of specifying under which condition a subscription
is invoked (e.g., a Selective Consumer) or if a subscription is durable or
not (e.g., Durable Subscriber). A Message Endpoint can also be abstractly
defined by specifying which channel it will use, without any needs to specify
also the broker from which it will use those channels.� �

1 MessageEndpoint:
2 'message' 'endpoint' name=ID
3 ('of' 'type' types+=MessageEndpointType
4 (',' types+=MessageEndpointType)*)?
5 ('serves' 'as' primaryRole=ResourceRole
6 ('and' otherRoles+=ResourceRole)* 'role'?)?
7 ('description' description=STRING)?
8 'uses'
9 ('channels' ':'
10 channelsNoBroker+=AsyncConsumptionWithProtocolBinding (','
11 channelsNoBroker+=AsyncConsumptionWithProtocolBinding)*
12)?
13 (channels+=AsyncConsumptionFromBroker
14 (',' channels+=AsyncConsumptionFromBroker)*)?
15 ;� �

Listing 33: AsyncMDSL Message Endpoints grammar rules� �
1 message endpoint MyDeviceEndpoint
2 of type EVENT_DRIVEN_CONSUMER, DURABLE_SUBSCRIBER
3 serves as PROCESSING_RESOURCE
4 uses
5 channels:
6 MyChannelWithoutBroker1,
7 MyChannelWithoutBroker2
8

9 from MessageBroker:
10 WakeUpChannelRequest
11 where consumed if "$message.payload#/deviceId" == 42,
12

13 from OtherMessageBroker:
14 ChannelExposedByOtherMessageBroker� �

Listing 34: AsyncMDSL Message Endpoint example

44

4.3 AsyncMDSL Language Features

Indicating the type of a Message Endpoint allows us to cover:

• US-10: Competing Consumers
• US-11: Polling Consumer
• US-12: Event-Driven Consumer
• US-14: Durable Subscriber

while the ConsumptionWhereClauses (Listing 34, line 11) to cover US-13:
Selective Consumer. The ConsumptionWhereClauses ’ left expression follows
the same JSON Pointer format described in section 4.3.3.

45

4.4 Static Verification Rules (linter)

4.4 Static Verification Rules (linter)

A linter [28] is a software that examines source code to detect programming
errors, bugs, stylistic inconsistencies, and suspicious constructs. Xtext pro-
vides a way to define custom verification rules that will statically validate
the source code of the DSL, in this case of AsyncMDSL. This rules play
a fundamental role in enforcing meaningful constructs since grammar rules
alone can not represent all the semantic we need. The currently implemented
semantic checks are listed in table 2.

Rule Type Motivation

Message Channel
names must be unique

error

Message Channel are identified and
referenced by their name, that
thus requires to be unique in each
AsyncMDSL document.

Message Channel
paths must be unique

error

Message Channel using the same
path might cause unwanted behavior
in the message-based system. Mes-
sage Channels with the same path
are likely to be a design error.

Request-Reply Chan-
nel types can not be
Publish-Subscribe, In-
valid Message or Dead
Letter

error

A Request-Reply Channel is a Point-
to-Point channel by design, and
thus it can not be of type Publish-
Subscribe, Invalid Message Channel
or Dead Letter Channel.

Message Channel
types must be com-
patible each other

error

A Message Channel defined with a
type can not contain types that con-
flict with the previously defined one.
For example if a Message Channel is
declared as Dead Letter Channel, it
can not be also of type Invalid Mes-
sage Channel.

Message Channel
types can not contain
duplicates

warning
It is useless to define a duplicate
type for a Message Channel.

46

4.5 Generating AsyncAPI

Message Endpoint
should contain a
Message Channel
reference

warning
A Message Endpoint not containing
Message Channel references does not
represent any information.

Message Channel di-
rection must match
payload direction

warning

If a Message Channel produces a
message it will deliver a payload,
and it will never expect a payload.
The same applies reversed.

Message Channel di-
rection must match
header direction

warning

If a Message Channel produces a
message it will deliver headers, and
it will never expect headers. The
same applies reversed.

Runtime expression
must be compliant
to the JSON Pointer
format [17]

error
The expression must reference a
valid field of the message or it will
not parsed properly.

Parameters in the
path of a channel
must be described

error
Each parameter that appears in the
path of a channel must have a type.

Broker security pol-
icy must specify
API KEY path

warning

If a Message Broker is using
API KEY as security policy, it must
specify where to find the API KEY
in the message.

Broker security pol-
icy must specify
API KEY path in
correct format

error
The expression must reference a
valid field of the message or it will
not parsed properly.

Table 2: Implemented semantic checks

4.5 Generating AsyncAPI

One of the project requirements is the possibility of generating AsyncAPI
from an AsyncMDSL document to exploit the existing tooling that AsyncAPI’s
team has developed. One of those existing tools is the async-api-generator 4,

4https://github.com/asyncapi/generator/releases/tag/v1.0.0-rc.4

47

https://github.com/asyncapi/generator/releases/tag/v1.0.0-rc.4

4.5 Generating AsyncAPI

a Node.js [35] package that takes as input an AsyncAPI document and pro-
duces as output a project skeleton based on the input specification and the
selected target template. The generator supports different templates, allow-
ing to reduce the initial configuration of a new project by providing boiler-
plate code. The current version (v1.0.0-rc.4) of the generator supports the
following official templates:

• asyncapi/nodejs-template: a Node.js template with support for AMQP,
MQTT, Kafka and WebSockets

• asyncapi/nodejs-ws-template: another Node.js template with support
only for WebSockets

• asyncapi/java-spring-template: a Java Spring Boot template with sup-
port only for Kafka

• java-spring-cloud-stream-template: a Java Spring Cloud Stream tem-
plate with support for Kafka and RabbitMQ

• asyncapi/python-paho-template: a Python template with support for
MQTT

• asyncapi/html-template: a browsable static website that can be used
for documentation purposes

• asyncapi/markdown-template: an alternative representation of the HTML
version that instead uses markdown5

Our language extension must be converted into AsyncAPI to exploit this
generator. The conversion can be accomplished either by:

• mapping our Abstract Syntax Tree (AST) to the AsyncAPI’s AST
• exploiting a template-based approach.

Eclipse Xtext provides the AST of AsyncMDSL, but at the time of writing,
there is no object-oriented representation of AsyncAPI’s AST. So we opted
for a template-based approach, where we define a template that matches the
AsyncAPI specification structure, and we populate it with a model. This
approach is often referred to as the MVC (Model View Controller) pattern
[11].
Different template engine exists, such as [6], [16] or [4]. The initial choice
was Apache Freemarker, but it turned out that it was not the best approach
to accomplish our goal. Three major feature were missing:

5https://commonmark.org/

48

https://commonmark.org/

4.5 Generating AsyncAPI

• it does not provide code completion for anything but template lan-
guage6

• a template can not contain Java expression
• every method that does not belong to the model object must be indi-

vidually injected.

We then decided to use a tool suggested by the Xtext framework: Xtend
[14]. Xtend is a dialect of Java that compiles into readable Java 8 compatible
source code. As soon as we generate Xtext artifacts for the grammar, a code
generator stub is put into the DSL’s runtime project. Writing a generator
for AsyncAPI is a matter of implementing that abstract class to produce
valuable output. One of the main advantages of using Xtend to implement
the generator is that it supports feature like multiline strings, native Java
expressions invocations and smart handling of white space in the template
output, resulting in readable templates as well as nicely formatted output.

Figure 4: Xtend smart white space support in Eclipse

The code snippet shown in Figure 4 represent an example of Xtend’s smart
white space handling. All blue characters highlighted in gray are the one
that will be directed to output, while other characters, such the ones that
indent the inner for loop, are ignored.

Using Xtend to create the generator allows to employ Java features, care-
fully made available though a syntax designed to define templates (e.g., by

6An Eclipse Freemarker editor has been deprecated by Red Hat, but it is still available
at https://github.com/jbosstools/jbosstools-freemarker.

49

https://github.com/jbosstools/jbosstools-freemarker

4.5 Generating AsyncAPI

offering a safe navigator operator, Figure 5). On the other side, one huge
drawback of using a template approach rather that mapping Abstract Syn-
tax Trees is that any error in the template result in an invalid AsyncAPI
document.

Figure 5: Xtend example: arguments that would be passed to the method
compile are only evaluated if the method will be invoked.

4.5.1 MDSL data types to JSON Schema specification

All features defined into an AsyncMDSL document must be converted into
an AsyncAPI document. Documents describing an event-driven system in
accordance with AsyncAPI specification are represented as JSON objects and
conform to the JSON standards. YAML [57], being a superset of JSON, can
be used as well to represent any AsyncAPI specification file and will target
this format. MDSL datatypes must be converted as well to YAML format,
and Table 3 illustrates the mapping between Structure Patterns available in
MDSL and the corresponding YAML structures.

Structure Pattern [61] YAML
Atomic Parameter Scalar Node

Atomic Parameter List Sequence Node of Scalar Nodes

Parameter Tree Mapping Node

Parameter Forest Sequence Node of Mapping Nodes

Table 3: AsyncMDSL data types to YAML mapping

Even if a mapping between MDSL data types and YAML format exists, we
actually need to convert data types in what AsyncAPI’s teams call Schema

50

4.5 Generating AsyncAPI

Object7. A Schema Object allows the definition of input and output data
types for the exposed channels, and it is a superset of JSON Schema [46]
specification. [46] describes data formats providing human readable docu-
mentation and can be used to automatically validate data. An example of
an AsyncAPI’s Schema Object can be found in Listing 35. The same infor-
mation represented in MDSL is in Listing 36.� �

1 TypeReferenceDemo:
2 type: object
3 required:
4 - referenceId
5 properties:
6 referenceId:
7 type: number
8 ParameterTreeDemo:
9 type: object
10 required:
11 - listOfKeyValues
12 properties:
13 listOfKeyValues:
14 type: array
15 items:
16 type: object
17 required:
18 - key
19 properties:
20 key:
21 type: number
22 value:
23 type: object
24 properties:
25 additionalProperties:
26 type: null
27 reference:
28 $ref: '#/components/schemas/TypeReferenceDemo'� �

Listing 35: AsyncAPI Schema Object example� �
1 data type TypeReferenceDemo "referenceId": ID<int>
2

3 data type ParameterTreeDemo {
4 "listOfKeyValues": {
5 "key": D<int>,

7https://www.asyncapi.com/docs/specifications/2.0.0/#schemaObject

51

https://www.asyncapi.com/docs/specifications/2.0.0/#schemaObject

4.5 Generating AsyncAPI

6 "value": { P }? // optional value of unknown shape
7 }+, // note the + to define a non-empty list
8 "reference": TypeReferenceDemo?
9 }� �

Listing 36: MDSL equivalent of the above Schema Object

In the conversion to the JSON Schema representation Parameter Forest —
which are list of items of any shape — are converted into tuples, sequences
of fixed length where each item may have a different schema. Labels of
Parameter Forest are ignored during the conversion.� �

1 data type ParameterForestDemo [
2 "x": { // "x" is the label of the first tuple item
3 "tupleFirstItem": D<string>
4 };
5

6 "y": {
7 "tupleSecondItem": TypeReferenceDemo
8 };
9

10 "z": {
11 "tupleThirdItem": P
12 }
13]� �

Listing 37: Parameter Forests are seen as tuples in AsyncMDSL

52

4.5 Generating AsyncAPI

� �
1 ParameterForestDemo:
2 type: array
3 items:
4 -
5 type: object
6 required:
7 - tupleFirstItem
8 properties:
9 tupleFirstItem:
10 type: string
11 -
12 type: object
13 required:
14 - tupleSecondItem
15 properties:
16 tupleSecondItem:
17 $ref: '#/components/schemas/TypeReferenceDemo'
18 -
19 type: object
20 required:
21 - tupleThirdItem
22 properties:
23 tupleThirdItem:
24 type: object
25 additionalProperties:
26 type: null� �

Listing 38: ParameterForest are mapped to tuples in JSON Schema specifi-
cation

53

4.5 Generating AsyncAPI

4.5.2 AsyncMDSL to AsyncAPI mapping

Each AsyncMDSL concept is mapped to one, or a combination of more
AsyncAPI’s specification objects. Table 4 provides a mapping to such ob-
jects.

AsyncMDSL AsyncAPI Description

Service Specifici-
cation

AsyncAPI Ob-
ject, AsyncAPI
Version String,
AsyncAPI Info
Object and
Components
Object

Each serviceSpecification repre-
sent a group of channels, and con-
tains global available information
such as the version and a descrip-
tion, and furthermore it is the
container of all the other compo-
nents.

OneWay Chan-
nel

Operation Ob-
ject

An operation represent a channel,
with path, parameters and mes-
sage schema. In AsyncAPI chan-
nels’ names are their paths.

Request-Reply
Channel

A pair of Chan-
nel Item Object

A Request-Reply Channel is
mapped into a pair of separate
channels, each with its own path.

Channel param-
eter

Parameter Ob-
ject

Each object describes a single
parameter included in a channel
path.

Message Message Object

Represent a message that flows
through a channel. It provides a
place to document how and why
messages are produces and con-
sumed.

Channel Binding
Operation Bind-
ing Object

Allows the definition of protocol-
specific parameters for a Message
Channel.

Broker Bindings
Server Bindings
Object

Allows the definition of protocol-
specific parameters for a Message
Broker.

Datatypes Schema Object
Allows the definition of input and
output data types.

54

4.5 Generating AsyncAPI

Correlation Id
Where Clause

Correlation ID
Object

Specifies an identifier at design
time that can used for message
tracing and correlation.

Datatype Type
Reference

Reference Ob-
ject

Allows referencing other data
types in the specification.

Message Broker Server Object

Represents a Message Broker us-
ing a single protocol. If a Message
Broker supports multiple proto-
cols, a copy of it will be created
for each distinct protocol.

Endpoints
AsyncAPI does not support Mes-
sage Endpoints.

Table 4: AsyncMDSL concepts mapped to AsyncAPI’s specification objects

55

Chapter 5

Loan Broker Example

5.1 Modeling a scenario

The Loan Broker is a well-known example described in [23] to discuss how
EIPs can be applied. Even if it does not cover all of our user stories, it is a
good example to see AsyncMDSL in action. The language easily models this
scenario, and even if not shown in this example, it can cover more use cases
derived from our requirements.

Figure 6: Overview of the example scenario

A customer need to obtain a loan, and provides some personal information
to a loan broker. The loan broker needs this data to determine the best
interest rate it could obtain from the banks. Before contacting the banks,
the loan broker interacts with a credit bureau to get the credit worthiness of
the customer. Once obtained this value the loan broker proceeds contacting

56

5.1 Modeling a scenario

banks and determining the best quote to offer to its customer. The loan
broker requires the following inputs from the customer:

• social security number, to uniquely identity the requester
• loan amount
• loan term,

while the customer will receive in response from the broker:

• the interest rate
• a quote identifier for future references.

For the sake of simplicity, we assume that all entities already employ a
message-based architecture or some Channel Adapters [23]. Every AsyncMDSL
document start with a preamble� �

1 API description LoanBrokerExample
2 version "1.0.0"� �

Listing 39: AsyncMDSL preamble

where we define name, version and an optional description of the overall
system design. We then proceed to declare all the Data Transfer Objects
(DTOs) that our system will use. Defining all DTOs is not required, as
they can also appear as anonymous objects where needed, but it explicitly
separates data representation and system’s architecture, furthermore they
can be reused multiple times.� �

1 data type LoanRequestDto {
2 "socialSecurityNumber": ID<int>,
3 "amount": D<double>,
4 "termInMonths": D<int>,
5 "requestId": ID<int>
6 }
7

8 data type LoanReplyDto {
9 "quoteId": ID<int>,
10 "interestRate": D<double>,
11 "requestId": ID<int>
12 }� �

Listing 40: Loan broker input/ouput parameters

57

5.1 Modeling a scenario

� �
1 data type CreditBureauRequestDto {
2 "socialSecurityNumber": ID<int> ,
3 "requestId": ID<int>
4 }
5

6 data type CreditBureauReplyDto {
7 "socialSecurityNumber": ID<int>,
8 "creditScore": D<double>,
9 "creditHistory": { P }*,
10 "requestId": ID<int>
11 }
12

13 data type BankLoanRequest {
14 "creditScore": D<int>,
15 "creditHistoryLength": D<int>,
16 "requestId": ID<int>
17 }
18

19 data type BankLoanReply {
20 "quoteId": D<int>,
21 "interestRate": D<double>,
22 "requestId": ID<int>
23 }
24

25 data type CommonHeaders {
26 "brokerId": ID<int>
27 }� �

Listing 41: Data Transfer Objects (DTOs) emploied in channels

Once data types are defined, they can be referenced inside channels. The first
channel we model is the one that will be used by the customer to make a loan
request and receive a response (LoanBrokerChannel). All types of channels,
in this example, expect a request-reply message flow. Thus they are repre-
sented as Request-Reply Channels. Furthermore, they are also Guaranteed
Delivery Channels, meaning that no message will be lost due to network or
message broker failures.� �

1 channel LoanBrokerChannel
2 of type GUARANTEED_DELIVERY, POINT_TO_POINT
3 request message LoanRequest
4 description "This channel is used by a
5 customer to make a request."
6 on path "loan-broker/request"

58

5.1 Modeling a scenario

7 expecting
8 payload LoanRequestDto as DOCUMENT_MESSAGE
9 reply message LoanReply
10 description "The loan broker will reply to the customer
11 after having contacted all the banks and
12 found the best quote."
13 on path "loan-broker/reply"
14 delivering
15 headers CommonHeaders
16 payload LoanReplyDto
17 where
18 CORRELATION_ID is "$message.payload#/requestId",
19 MESSAGE_EXPIRES in 60m� �

Listing 42: Loan broker channels

Every Request-Reply Channel is composed of two different channels on which
the request and the reply will flow. Request and reply channels have a
different logical path, and different input/output data models. The reply
message must somehow be bound to the request message to understand which
reply is for which request. We can express this relation by exploiting the
Correlation Identifier pattern, as shown in line 15 of Listing 42, where we
declare that the field that has to be used to link the reply is its payload’s
property requestId.� �

1 channel CreditBureauChannel
2 of type GUARANTEED_DELIVERY, POINT_TO_POINT
3 request message CreditScoreRequest
4 description "Request the credit score and customer history."
5 on path "credit-bureau/request"
6 expecting
7 headers CommonHeaders
8 payload CreditBureauRequestDto
9 reply message CreditScoreReply
10 description "Return the credit score and customer history"
11 on path "credit-bureau/reply"
12 delivering payload CreditBureauReplyDto
13 where
14 CORRELATION_ID is "$message.payload#/requestId"� �

Listing 43: Credit bureau channels

Channels can also optionally expect/deliver protocol-specific headers (e.g.,
AMQP, JMS, or Kafka message headers), and their path can contain param-
eters, as in the BanksChannel, where, based on the bankId, a different bank

59

5.1 Modeling a scenario

will take care of satisfying the request.� �
1 channel BanksChannel
2 of type GUARANTEED_DELIVERY, POINT_TO_POINT
3 request message LoanProposalRequest
4 description "Request a loan proposal"
5 on path "banks/${bankId}/loans/request"
6 with bankId: int, "The identifier of the bank to contact"
7 expecting payload BankLoanRequest
8 reply message LoanProposalReply
9 description "The loan proposal for the given customer"
10 on path "banks/${bankId}/loans/reply"
11 with bankId: int, "The identifier of the bank that replied"
12 delivering payload BankLoanReply� �

Listing 44: Banks channels

Once all channels have been defined, we can list Message Brokers, the providers
that will expose the channels under a concrete protocol.� �

1 message broker LoanBrokerAmqpProvider
2 exposes LoanBrokerExample
3 at location "amqp.loanbroker.com"
4 via protocol AMQP� �

Listing 45: Loan broker definition

Finally, we define all the Message Endpoints that will use channels defined
above to consume or to produce messages. Message Endpoints can use chan-
nels from a Message Broker or can be abstractly defined by specifying the
list of channels they will use without mentioning the actual Message Broker.� �

1 message endpoint Customer
2 uses channels:
3 LoanBrokerChannel
4

5 message endpoint LoanBroker
6 uses from LoanBrokerAmqpProvider:
7 LoanBrokerChannel,
8 LoanRequest,
9 LoanReply
10

11 message endpoint Bank1
12 uses channels:
13 LoanProposalRequest
14 where
15 consumed if "$message.payload#/creditScore" > 80,

60

5.1 Modeling a scenario

16 LoanProposalReply
17

18 message endpoint Bank2
19 of type DURABLE_SUBSCRIBER
20 uses channels:
21 BanksChannel
22

23 message endpoint Bank3
24 uses channels:
25 BanksChannel� �

Listing 46: Message endpoints

Message Endpoints can have their type as well (e.g., they can be Durable
Subscribers, as in line 19 of Listing 46), and specify under which conditions
they will consume a message from a channel (and act as a Selective Con-
sumer, as in line 15 of Listing 46).

The generated AsyncAPI specification file from this example can be found
in appendix B.

61

Chapter 6

Discussion

6.1 AsyncMDSL and AsyncAPI

The AsyncMDSL language presented in this work can be used to model
message-based system, providing an alternative specification to AsyncAPI.
Even if both specifications have the same final scope, they use different design
goals. AsyncAPI started as an adaptation of the OpenAPI specification [25],
and one of the design principles was to have as much compatibility as possible
with it. In this way some components of OpenAPI can be directly imported
into an AsyncAPI document, and vice-versa. This approach, on one side,
is convenient for messaging integration architects because it is similar to
existing products and code reuse can be exploited. While on the other side
this very same approach prevented some specification design decisions from
being radically changed, maybe to best fit some new concepts. AsyncMDSL,
on the other hand, has been developed entirely focusing on expressiveness in
modeling messaging-based systems. As per this decision, it features lots of
components directly inspired from state of the art solutions in [23].

6.1.1 Missing features

AsyncMDSL does not yet offer all features AsyncAPI offers, as the AsyncAPI
specification is quite complex and AsyncMDSL is a novelty.

Security mechanisms

AsyncAPI allows the definition of a variety of security mechanisms to describe
how message brokers deal with authentication. AsyncAPI currently supports:

62

6.1 AsyncMDSL and AsyncAPI

• User/Password
• API key
• X509 certificate
• End-to-end encryption (either symmetric or asymmetric)
• HTTP authentication
• Some OAuth2’s common flows
• OpenID Connect Discovery

AsyncMDSL does not yet provide a complete representation of the security
mechanisms that a message broker would need.

Component traits

AsyncAPI allows the definition of a base component, a trait, that can be
used to extend other components reducing code duplication. In Listing 47
we are defining a message channel where some information are inherited by
the BaseMessageHeaders. Supposing BaseMessageHeaders defines payload’s
headers, also users/register would deliver the same headers.� �

1 users/register:
2 publish:
3 operationId: registerUser
4 summary: Action to sign a user up.
5 message:
6 payload:
7 $ref: "#/components/schemas/RegisterDto
8 traits:
9 - $ref: "#/components/operationTraits/BaseMessageHeaders"� �

Listing 47: AsyncAPI message trit example

To achieve a similar result with AsyncMDSL one would need to define a
data type CommonHeaders and for each channel specify the headers refer-
encing the shared base model. An AsyncAPI’s trait indeed is more useful
when used to specify multiple common properties of a channel, for example
headers and bindings for a specific protocol.

63

6.1 AsyncMDSL and AsyncAPI

Bindings

The AsyncAPI specification does not assume any kind of soft-
ware topology, architecture or pattern. Therefore, a server may
be a message broker, a web server or any other kind of com-
puter program capable of sending and/or receiving data. How-
ever, AsyncAPI offers a mechanism called ”bindings” that aims
to help with more specific information about the protocol and/or
the topology. [24]

AsyncAPI’s documentation describes ”bindings” as a way to enrich the defi-
nition of a component, such as a channel or a broker. Bindings allow to define
protocol-specific properties, for example the exchange name in AMQP or the
group identifier in Kafka. AsyncMDSL allows the definition of bindings both
at broker and at channel level, but the values are not validated, but rather
just transcribed in the generation phase.� �

1 channel MyAMQPBroker
2 on path "messages/new"
3 produces message IncomingMessage
4 delivering payload MessageDto
5 bindings for AMQP {
6 "is": "routingKey",
7 "queue": {
8 "name": "my-messages-queue-name",
9 "durable": true
10 }
11 }� �

Listing 48: AsyncMDSL channel binding example

Bindings contained in Listing 48 are just reported in the generated YAML
file. This means that the AsyncAPI document will result valid if and only
if binding properties follow the format that AsyncAPI expects. In a future
version of the grammar, bindings will be directly supported, thus providing
structure validation.

64

6.1 AsyncMDSL and AsyncAPI

6.1.2 Specifications comparison

The following table summarizes some quick facts that derive from the com-
parison between our DSL and AsyncAPI. It features different aspects of the
languages, such as their syntax, the size of their specifications, or their ma-
turity.

Criterion AsyncMDSL AsyncAPI

Concrete syntax
DSL (made with
Xtext)

YAML, JSON

Abstract syntax EIPs event-driven systems

Main use cases
agile modeling, con-
tract first

code first, testing and
scaffolding generation

Bindings same as AsyncAPI1
AMQP, Kafka, Web-
Socket and many
more2

Size of specification
18 pages (less com-
plete)

52 pages

Size of Loan Broker ex-
ample

347 words 3,211 char-
acters

610 words 7,646 char-
acters

Tools
few (editor, AsyncAPI
generator)

many 3

Maturity
will soon be open
sourced

since 2017

Licence Apache License 2.0 Apache License 2.0

Table 5: Comparison between AsyncMDSL and AsyncAPI

One of the facts that stands out is the considerable difference in the number
of words and characters needed to model the Loan Broker Example. Our DSL
indeed exploits the captured patterns knowledge to create comments in the
generated AsyncAPI document. Those comments enrich the specification file,
making it possible for clients to derive similar information as they would have
done directly using our AsyncMDSL model. Another fact to consider when
comparing the languages is that AsyncMDSL is less comprehensive than
the corresponding counterpart: it does not allow, for example, the proper

65

6.1 AsyncMDSL and AsyncAPI

modeling of the message broker’s security policies, as previously pointed out.
Expressiveness is another important feature where specifications diverge.

AsyncMDSL, being a domain-specific language for message-based systems,
is designed to cover scenarios that arise in this domain. This means that it
supports domain components as first class citizens. In a specification based
on YAML/JSON, as AsyncAPI, domain components are instead non-native
concepts that need to be represented exploiting the chosen format. More-
over, AsyncAPI highly exploits JSON Pointer to link components together,
resulting in a less understandable structure.� �

1 devices/wakeUp:
2 subscribe:
3 operationId: wakeUpCommand
4 message:
5 $ref: '#/components/messages/WakeUp'� �

Listing 49: AsyncAPI channel definition

Comparing listing 49 and 50, we can notice how the AsyncAPI channel def-
inition is not self-explanatory, and the reference chain needs to be manually
followed in order to infer even some basic information that in the AsyncMDSL
counterpart are straight available. The AsyncAPI channel in the first list-
ing does not include information like the type of the channel (are consumers
of the WakeUp message one or more than one?), neither information on the
semantic of the channel itself (which is the purpose of the message?). This
missing data must be reported as comments, making it challenging to under-
stand the channel’s roles, and keeping consistent documentation.� �

1 channel MyDatatypeChannel
2 of type DATA_TYPE, PUBLISH_SUBSCRIBE
3 on path "devices/wakeUp"
4 accepts message WakeUp
5 expecting
6 payload WakeUpDto as COMMAND_MESSAGE
7 where MESSAGE_EXPIRES in 15m� �

Listing 50: AsyncMDSL channel definition

If we consider the concrete syntax of AsyncAPI, either JSON or YAML,
we can stand out that it is not designed to be explicative, as JSON is a

1AsyncMDSL just forwards the provided bindings to AsyncAPI generator.
2https://github.com/asyncapi/bindings
3https://www.asyncapi.com/docs/tooling

66

https://github.com/asyncapi/bindings
https://www.asyncapi.com/docs/tooling

6.2 Requirements Evaluation

data-interchange format, and YAML a superset of it. On the other side, our
DSL offers clear keywords — not properties names — that are valid under a
specific context. This means that the autocompletion suggestions that our
editor proposes ease the work of integration architects, as it is simpler to pick
from a small number of suggestions than reading a specification document
which lists all the properties available at the current object depth or path.

6.1.3 AsyncMDSL design

AsyncMDSL has been designed based on the patterns described in [23].
Given that EIPs are widely accepted and used, a language that defines those
patterns as first-class concepts would express familiar notions to software
architects. The language, as MDSL, promotes readability over parsing ef-
ficiency, support partial specifications — that can be refined iteratively —
and it is not bound to any specific protocol or message exchange format.

6.2 Requirements Evaluation

6.2.1 Requirements coverage

We provided, for each section presenting a language feature, traceability to
requirements. To summarize, out of 17 user stories representing a functional
requirement, 16 are fully satisfied, and the last one, US-17: Server security, is
supported by the grammar but not yet available in the generated AsyncAPI
document. Table 6 recaps where users stories have been covered, while non-
functional requirements, for which we didn’t provide traceability yet, are
described next. NFRs can be divided in two categories: the ones that are
determined by our implementation, such as NFR-5: AsyncAPI conversion
time, and ones that demand evaluators’ feedback, such as NFR-1: Usability.

67

6.2 Requirements Evaluation

Requirement Covered in
US-1: Model a message-based system ServiceSpecification
US-2: Integrate with AsyncAPI Generating AsyncAPI
US-3: Message Channels ChannelContract
US-3.1: Point-to-Point Channel One-way channel
US-3.2: Publish-Subscribe Channel ChannelContract

US-3.3: Datatype Channel
ChannelContract, Message’s
payload and header

US-4: Messages Message’s payload and header
US-4.1: Command Message Message’s payload and header
US-4.2: Document Message Message’s payload and header
US-4.3: Event Message Message’s payload and header
US-4.4: Request-Reply Message Request-Reply channel
US-5: Return Address Request-Reply channel
US-6: Correlation Identifier Where clauses
US-7: Message Sequence Where clauses
US-8: Message Expiration Where clauses
US-9: Message Endpoints Message Endpoints
US-10: Competing Consumers Message Endpoints
US-11: Polling Consumer Message Endpoints
US-12: Event-Driven Consumer Message Endpoints
US-13: Selective Consumer Message Endpoints
US-14: Durable Subscriber Message Endpoints
US-15: Message Brokers Message Brokers

US-16: Specify protocol-specific informa-
tion

Message Brokers, One-way
channel and Request-Reply
channel

US-17: Server security Partially in Message Brokers

Table 6: Requirements mapping to language features

NFRs fulfillment by implementation

In the following bullet list, we present NFRs which demand no evaluators’
feedback, while in section 6.2.1 we present how we collected evaluators feed-
back and how they affected the fulfillment of the remaining NFRs.

68

6.2 Requirements Evaluation

• NFR-4: Specification’s complexity. The MDSL standard grammar is
composed by 67 rules, and the AsyncMDSL extension adds 31 new
rules, for a total of 98 rules, which is slightly below our requirements
limit.

• NFR-5: AsyncAPI conversion time. The example modeled in section
5.1, which contains more channels than the demo project4 lasts, in
average, below a second.

• NFR-6: Maintainability and supportability. The project has clear
setup instruction, provided in form of markdown readmes, it exploits
eclipse built-in linter and it is properly documented following the Javadoc
convention.

• NFR-7: License. The project will be distributed under the Apache 2.0
License.

NFRs fulfillment by validation

We have not conducted a representative user test to measure the fulfillment of
the NFRs analytically. However, AsyncMDSL has been used by the project’s
supervisor and students from our university, allowing us to collect initial feed-
back5. Our test users, even if a small number, include both senior software
architects (the supervisor) and different master and bachelor students (seven
in total). The Table 7 summarizes the impressions and feedback we received.
Considering those feedbacks, we can conclude that also the remaining NFRs
have been fulfilled:

• NFR-1: Usability. Most of our evaluators confirmed that 15 to 30
minutes are enough to understand examples written in AsyncMDSL.

• NFR-2: Expressiveness. All the evaluators also affirmed that the syn-
tax is easy to read and to understand, provided that it is properly
formatted.

4https://www.asyncapi.com/docs/tutorials/streetlights
5Feedbacks have been collected individually by a direct communication with evaluators,

since they did not submitted a validation survey.

69

https://www.asyncapi.com/docs/tutorials/streetlights

6.2 Requirements Evaluation

Topic Feedbacks

Syntax

Users found the syntax self-describing and almost al-
ways clear. However, we received a few critical feed-
backs as well, precisely on the absence of parenthesis
to logically identify blocks and scopes and on a miss-
ing common syntax for data types, channel path pa-
rameters, and protocol bindings. Furthermore, users
were expecting autocompletion feature for the corre-
lation identifier path.

Examples

Users mentioned that it is possible to understand ex-
amples written in the DSL within 15 to 20 minutes,
given that a brief intruduction to message-based ar-
chitectures is provided.

Features and Tools

A frequent remark is the IDE support. Users are not
willing to install Eclipse if it is not their primary IDE.
The absence of a formatter has also been pointed out
several times.

General

In summary, the feedback regarding the syntax was
satisfying, taking into AsyncMDSL is not mature
yet. Providing high quality documentation and de-
tailed examples are key factors in being quickly pro-
ductive.

Table 7: AsyncMDSL evaluators feedbacks

70

Chapter 7

Conclusions

This thesis introduced a domain-specific language (DSL) featuring some En-
terprise Integration Patterns as first-class concepts to allow the creation of
message-based system’s models. While the different patterns have already
been discussed in the literature [23] [20] [52] , this work aims to define how
they can be employed to describe an evolving system iteratively. AsyncMDSL
can offer a contract-first design approach and support for agile modeling
practices [34] as well as generate rich documentation exploiting existing tools.
The targeted AsyncAPI specification used to generate documentation or code
scaffolding is enriched, allowing the description of patterns that the specifica-
tion alone can not model, such as Point-to-Point or Request-Reply Channels,
allowing for keeping a consistent style also in the documentation.

The implemented DSL provides a way to describe systems, and the models
are written in a form that can be processed. Once message routing patterns
will be included, automatic tools could systematically identify the architec-
tural smells that possibly violate the design principles, as [10] is doing for
microservice-based architectures.

Given that this project’s critical requirements and goals were fulfilled,
and besides concrete deliverables, this project offered the opportunity to
strengthen personal knowledge about message-driven architectures and inte-
gration design patterns. Even if EIPs were introduced in the early 2000s,
message-driven solutions are spreading more and more thanks to the always
increasing diffusion of the Internet of Things (IoT) devices that exploit light
asynchronous protocols like MQTT. A specification language that grasps the
context’s key factors plays a fundamental role in helping both system design-
ers and consumers achieving their goals.

71

7.1 Future Work

7.1 Future Work

AsyncMDSL is not a full-fledged product and it is still missing crucial features
that a modeling language should include in its ecosystem. AsyncMDSL does
not cover Message Routing, Message Translation nor System Management
patterns defined in [23]. One of the next steps that this project should take
is adding the possibility to model routing. The possibility to model messages
flow, and thus business logic, could be used inside frameworks as [5], with a
similar experience as with [47].

Others features regards visual representation, code formatting and IDE
support. Grammar refinement derived from feebacks is also subject of gram-
mar’s next releases. They can comprise topics described in Table 7 as well
as others targeting the base MDSL language.

Visual representation, in the form of components interactions’ diagrams,
are an effective mean for software architects. [23] defines a comprehensive
notation [55] which covers all aspects of an integration solution. This notation
is handy as a precise visual description of a system that can serve as the basis
for code generation as part of model-driven architecture [30]. An example of
visual modeler with support for EIPs is [15].

The last point AsyncMDSL should take into account is the IDE support.
The DSL’s editor should also be available in IDE different from Eclipse, such
as the popular Visual Studio Code [56], that supports the Language Server
Protocol (LSP) [33]. Formatting, rearranging the text in a document to
improve the readability without changing the semantic, should as well be
supported in the editor.

72

List of Figures

1 AsyncAPI SWOT analysis . 13

2 MDSL Eclipse integration . 24
3 Simplified AsyncMDSL’s Ecore class diagram 31
4 Xtend smart white space support in Eclipse 49
5 Xtend example: arguments that would be passed to the method

compile are only evaluated if the method will be invoked. . . . 50

6 Overview of the example scenario 56

7 AsyncAPI documentation generation for the Loan Broker ex-
ample . 98

73

List of Tables

1 AsyncAPI vs AsyncMDSL EIPs support 12

2 Implemented semantic checks 47
3 AsyncMDSL data types to YAML mapping 50
4 AsyncMDSL concepts mapped to AsyncAPI’s specification ob-

jects . 55

5 Comparison between AsyncMDSL and AsyncAPI 65
6 Requirements mapping to language features 68
7 AsyncMDSL evaluators feedbacks 70

74

Listings

1 Example of Camel’s Java DSL 7
2 Example of Camel’s bean integration 8
3 AsyncAPI channel definition example 10
4 AsyncAPI AMQP binding . 11
5 MDSL basic example . 25
6 SingleParameterNode example 26
7 AtomicParameterList example 27
8 ParameterTree example . 27
9 ParameterForest example . 27
10 MDSL endpont skeleton . 28
11 AsyncMDSL example . 32
12 Base rule that we want to extend 33
13 Directly extended rule . 33
14 New rule for new syntax . 34
15 provider parent rule . 34
16 New parent rule that supports both syntaxes 34
17 Simplified AsyncMDSL root grammar rule 35
18 AsyncMDSL serviceSpecification example 35
19 AsyncMDSL ChannelContract grammar rule 36
20 AsyncMDSL ChannelContract 36
21 AsyncMDSL OneWayChannel grammar rule 37
22 AsyncMDSL OneWayChannel 37
23 AsyncMDSL channel path grammar rule 38
24 AsyncMDSL channel path with parameters example 38
25 AsyncMDSL message grammar rules 39
26 AsyncMDSL Message example 39
27 AsyncMDSL Request-Reply Messages grammar rule 40
28 AsyncMDSL Request-Reply Message flow 41
29 AsyncMDSL WhereClauses grammar rules 41

75

Listings

30 AsyncMDSL WhereClauses in action 42
31 AsyncMDSL Message Broker grammar rules 43
32 AsyncMDSL Request-Reply Message flows 43
33 AsyncMDSL Message Endpoints grammar rules 44
34 AsyncMDSL Message Endpoint example 44
35 AsyncAPI Schema Object example 51
36 MDSL equivalent of the above Schema Object 51
37 Parameter Forests are seen as tuples in AsyncMDSL 52
38 ParameterForest are mapped to tuples in JSON Schema spec-

ification . 53
39 AsyncMDSL preamble . 57
40 Loan broker input/ouput parameters 57
41 Data Transfer Objects (DTOs) emploied in channels 58
42 Loan broker channels . 58
43 Credit bureau channels . 59
44 Banks channels . 60
45 Loan broker definition . 60
46 Message endpoints . 60
47 AsyncAPI message trit example 63
48 AsyncMDSL channel binding example 64
49 AsyncAPI channel definition 66
50 AsyncMDSL channel definition 66
51 AsyncMDSL preamble . 83
52 OneWayChannel syntax . 85
53 Request-Reply Channel syntax 87
54 Message Broker syntax . 88
55 Message Ednpoint syntax . 89
56 Loan Broker example converted to AsyncAPI 91

76

Bibliography

[1] Agile Alliance. User Stories. agilealliance.org. Dec. 2015. url: https:
//www.agilealliance.org/glossary/user-stories (visited on 07/01/2020).

[2] Agile Alliance. User Story Template for Agile. agilealliance.org. Dec.
2015. url: https : / / www . agilealliance . org / glossary / user - story -
template/ (visited on 07/01/2020).

[3] Apache. Apache Camel. Apache.org. url: https://camel.apache.org.

[4] Apache. Apache FreeMarker. Apache FreeMarker. 2000. url: https :
//freemarker.apache.org/ (visited on 06/09/2020).

[5] Apache. Java DSL - Apache Camel. Apache.org. 2020. url: https://
camel.apache.org/manual/latest/java-dsl.html (visited on 05/21/2020).

[6] Apache. The Apache Velocity Project. Apache.org. 2003. url: http :
//velocity.apache.org/ (visited on 06/11/2020).

[7] Nordic APIs. AsyncAPI vs OpenAPI: What’s The Difference? Nordic
APIs. Sept. 2019. url: https://nordicapis.com/asyncapi-vs-openapi-
whats-the-difference/ (visited on 05/21/2020).

[8] AsyncAPI. asyncapi/bindings. GitHub. Aug. 2019. url: https://github.
com/asyncapi/bindings/tree/master/amqp (visited on 05/22/2020).

[9] Guruduth Banavar et al. “A Case for Message Oriented Middleware.”
In: Lecture Notes in Computer Science (1999), pp. 1–17. doi: 10.1007/
3-540-48169-9 1.

[10] Antonio Brogi, Davide Neri, and Jacopo Soldani. “Freshening the Air
in Microservices: Resolving Architectural Smells via Refactoring.” In:
Lecture Notes in Computer Science (2020), pp. 17–29. doi: 10.1007/
978-3-030-45989-5 2. (Visited on 06/26/2020).

[11] Frank Buschmann and Et Al. Pattern-oriented software architecture.
J. Wiley, 2000.

77

https://www.agilealliance.org/glossary/user-stories
https://www.agilealliance.org/glossary/user-stories
https://www.agilealliance.org/glossary/user-story-template/
https://www.agilealliance.org/glossary/user-story-template/
https://camel.apache.org
https://freemarker.apache.org/
https://freemarker.apache.org/
https://camel.apache.org/manual/latest/java-dsl.html
https://camel.apache.org/manual/latest/java-dsl.html
http://velocity.apache.org/
http://velocity.apache.org/
https://nordicapis.com/asyncapi-vs-openapi-whats-the-difference/
https://nordicapis.com/asyncapi-vs-openapi-whats-the-difference/
https://github.com/asyncapi/bindings/tree/master/amqp
https://github.com/asyncapi/bindings/tree/master/amqp
https://doi.org/10.1007/3-540-48169-9_1
https://doi.org/10.1007/3-540-48169-9_1
https://doi.org/10.1007/978-3-030-45989-5_2
https://doi.org/10.1007/978-3-030-45989-5_2

Bibliography

[12] Mike Cohn and Kent Beck. User stories applied: for agile software
development. Addison-Wesley, , Cop, 2011.

[13] Bettina Druckenmüller and Frank Leymann Betreuer. “Parametrisierung
von EAI Patterns (In German).” In: (Feb. 2007).

[14] Sven Efftinge and Miro Spoenemann. Xtext - Language Engineering
Made Easy! Eclipse.org. 2020. url: https://www.eclipse.org/Xtext/
(visited on 06/04/2020).

[15] Enterprise Integration Patterns Diagram Tool. Visual-paradigm.com.
2020. url: https://www.visual-paradigm.com/features/enterprise-
integration-patterns-diagram-tool/ (visited on 06/26/2020).

[16] Daniel Fernández. Thymeleaf. Thymeleaf.org. 2018. url: https://www.
thymeleaf.org/ (visited on 06/11/2020).

[17] Internet Engineering Task Force. JavaScript Object Notation (JSON)
Pointer. Ietf.org. 2013. url: https://tools.ietf.org/html/rfc6901 (vis-
ited on 06/19/2020).

[18] Cloud Native Computing Foundation. Production-Grade Container Or-
chestration. Kubernetes.io. 2014. url: https://kubernetes.io/ (visited
on 06/11/2020).

[19] The Eclipse Foundation. EcoreTools - Graphical Modeling for Ecore.
www.eclipse.org. url: https://www.eclipse.org/ecoretools/ (visited on
07/01/2020).

[20] Martin Fowler. Patterns of enterprise application architecture. Addison-
Wesley, 2015.

[21] Erich Gamma et al. Design patterns : elements of reusable object-
oriented software. Addison-Wesley, 1994.

[22] Martin Glinz. “A Risk-Based, Value-Oriented Approach to Quality
Requirements.” In: IEEE Software 25 (Mar. 2008), pp. 34–41. doi:
10.1109/MS.2008.31.

[23] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: de-
signing, building and deploying messaging solutions. Boston Addison-
Wesley, 2015.

[24] Async API Initative. AsyncAPI. www.asyncapi.com. May 17. url:
https://www.asyncapi.com/ (visited on 05/21/2020).

78

https://www.eclipse.org/Xtext/
https://www.visual-paradigm.com/features/enterprise-integration-patterns-diagram-tool/
https://www.visual-paradigm.com/features/enterprise-integration-patterns-diagram-tool/
https://www.thymeleaf.org/
https://www.thymeleaf.org/
https://tools.ietf.org/html/rfc6901
https://kubernetes.io/
https://www.eclipse.org/ecoretools/
https://doi.org/10.1109/MS.2008.31
https://www.asyncapi.com/

Bibliography

[25] AsyncAPI Initiative. Coming from OpenAPI — AsyncAPI Initiative.
Asyncapi.com. 2019. url: https://www.asyncapi.com/docs/getting-
started/coming-from-openapi/ (visited on 06/19/2020).

[26] OpenAPI Initiative. OpenAPI Specification. OpenAPI Initiative. url:
https://www.openapis.org/ (visited on 05/21/2020).

[27] Integration Platform. MuleSoft. 2020. url: https : //www.mulesoft .
com/ (visited on 07/01/2020).

[28] S. C. Johnson. “Lint, a C Program Checker.” In: (1978), pp. 78–1273.

[29] Stefan Kapferer and Olaf Zimmermann. “Domain-driven Service De-
sign – Context Modeling, Model Refactoring and Contract Genera-
tion.” In: Proc. of the 14th Symposium and Summer School On Service-
Oriented Computing - SummerSoC (September 13-19, 2020). Springer
Communications in Computer and Information Science (CCIS), to ap-
pear.

[30] Anneke G Kleppe, Jos B Warmer, and Wim Bast. MDA explained :
the model driven architecture : practice and promise. Addison-Wesley,
2003.

[31] Pascal Kolb. “Realization of EAI Patterns with Apache Camel.” In:
(2007).

[32] Garm Lucassen et al. “The Use and Effectiveness of User Stories in
Practice.” In: Requirements Engineering: Foundation for Software Qual-
ity (2016), pp. 205–222. doi: 10.1007/978- 3- 319- 30282- 9 14. url:
https://link.springer.com/chapter/10.1007%2F978-3-319-30282-9 14.

[33] Microsoft. Language Server Protocol Specification. microsoft.github.io.
2017. url: https : //microsoft . github . io/ language - server - protocol/
specifications/specification-current/ (visited on 07/01/2020).

[34] Agile Modeling. Agile Modeling: Effective Practices for Modeling and
Documentation. Agile Modeling. 2020. url: http://agilemodeling.com/
(visited on 06/26/2020).

[35] Node.js. Docs — Node.js. Node.js. 2020. url: https://nodejs.org/en/
docs/ (visited on 06/09/2020).

[36] Terence Parr. ANTLR. ANTLR. 1989. url: https://www.antlr.org/
(visited on 06/08/2020).

79

https://www.asyncapi.com/docs/getting-started/coming-from-openapi/
https://www.asyncapi.com/docs/getting-started/coming-from-openapi/
https://www.openapis.org/
https://www.mulesoft.com/
https://www.mulesoft.com/
https://doi.org/10.1007/978-3-319-30282-9_14
https://link.springer.com/chapter/10.1007%2F978-3-319-30282-9_14
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
http://agilemodeling.com/
https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://www.antlr.org/

Bibliography

[37] Cesare Pautasso and Olaf Zimmermann. “The Web as a Software Con-
nector: Integration Resting on Linked Resources.” In: IEEE Software
35 (Jan. 2018), pp. 93–98. doi: 10.1109/ms.2017.4541049.

[38] RAML. RESTful API Modeling Language. RAML. url: https://raml.
org/ (visited on 05/21/2020).

[39] Daniel Ritter. “Experiences with Business Process Model and Notation
for Modeling Integration Patterns.” In: Modelling Foundations and Ap-
plications (2014), pp. 254–266. doi: 10.1007/978-3-319-09195-2 17.

[40] Kristopher Sandoval. 7 Protocols Good For Documenting With AsyncAPI
— Nordic APIs —. Nordic APIs, Jan. 2019. url: https://nordicapis.
com/7-protocols- good- for-documenting-with- asyncapi/ (visited on
05/21/2020).

[41] Kristopher Sandoval. AsyncAPI: 2020’s Industry Standard For Mes-
saging APIs? — Nordic APIs —. Nordic APIs. Jan. 2020. url: https:
//nordicapis.com/asyncapi-2020s- industry-standard- for-messaging-
apis/ (visited on 05/22/2020).

[42] Thorsten Scheibler and Frank Leymann. “A Framework for Executable
Enterprise Application Integration Patterns.” In: Enterprise Interop-
erability III (2008), pp. 485–497. doi: 10.1007/978-1-84800-221-0 38.
(Visited on 07/03/2020).

[43] Thorsten Scheibler and Frank Leymann. “From Modelling to Execu-
tion of Enterprise Integration Scenarios: The GENIUS Tool.” In: Kom-
munikation in Verteilten Systemen (KiVS) (2009), pp. 241–252. doi:
10.1007/978-3-540-92666-5 20. (Visited on 07/03/2020).

[44] Thorsten Scheibler and Frank Leymann. “Realizing Enterprise Integra-
tion Patterns in WebSphere.” In: (2005).

[45] Thorsten Scheibler, Ralph Mietzner, and Frank Leymann. “EMod:
platform independent modelling, description and enactment of param-
eterisable EAI patterns.” In: Enterprise Information Systems 3 (Aug.
2009), pp. 299–317. doi: 10 . 1080 / 17517570903042770. (Visited on
07/03/2020).

[46] JSON Schema. JSON Schema. JSON Schema. 2019. url: http://json-
schema.org/ (visited on 06/09/2020).

80

https://doi.org/10.1109/ms.2017.4541049
https://raml.org/
https://raml.org/
https://doi.org/10.1007/978-3-319-09195-2_17
https://nordicapis.com/7-protocols-good-for-documenting-with-asyncapi/
https://nordicapis.com/7-protocols-good-for-documenting-with-asyncapi/
https://nordicapis.com/asyncapi-2020s-industry-standard-for-messaging-apis/
https://nordicapis.com/asyncapi-2020s-industry-standard-for-messaging-apis/
https://nordicapis.com/asyncapi-2020s-industry-standard-for-messaging-apis/
https://doi.org/10.1007/978-1-84800-221-0_38
https://doi.org/10.1007/978-3-540-92666-5_20
https://doi.org/10.1080/17517570903042770
http://json-schema.org/
http://json-schema.org/

Bibliography

[47] Spring. Java DSL. Spring.io. 2020. url: https://docs.spring.io/spring-
integration/docs/5.1.0.M1/reference/html/java-dsl.html (visited on
05/22/2020).

[48] Spring. Spring Framework Core. 2002. url: https://docs.spring.io/
spring/docs/current/spring-framework-reference/pdf/core.pdf (visited
on 06/30/2020).

[49] Open standard. AMQP - Advanced Message Queuing Protocol. Amqp.org.
2014. url: https://www.amqp.org/ (visited on 05/23/2020).

[50] Dave Steinberg. EMF - Eclipse modeling framework. Addison-Wesley,
2011.

[51] Swagger.io. Swagger Tools — Swagger. Swagger.io. 2019. url: https:
//swagger.io/.

[52] Sasu Tarkoma. Publish/subscribe systems : design and principles. Wi-
ley, 2012.

[53] Mariah Tauer. TIBCO Teams Up With AsyncAPI to Advance Modern
Event-Driven Apps — The TIBCO Blog. The TIBCO Blog. Aug. 2019.
url: https ://www.tibco.com/blog/2019/08/21/tibco- teams- up-
with - asyncapi - to - advance - modern - event - driven - apps/ (visited on
05/21/2020).

[54] The Reactive Manifesto. Reactivemanifesto.org. 2014. url: https ://
www . reactivemanifesto . org / glossary # Message - Driven (visited on
06/29/2020).

[55] UML Profile for Enterprise Application Integration Specification. www.omg.org.
Mar. 2004. url: https://www.omg.org/spec/EAI/About-EAI/ (vis-
ited on 06/26/2020).

[56] Visual Studio Code. Visualstudio.com. Apr. 2016. url: https://code.
visualstudio.com/ (visited on 06/26/2020).

[57] YAML Ain’t Markup Language (YAML™) Version 1.2. Yaml.org. 2020.
url: https://yaml.org/spec/1.2/spec.html (visited on 06/08/2020).

[58] Xin Yuan. “Prototype for executable EAI patterns.” In: (2017). (Vis-
ited on 07/11/2020).

81

https://docs.spring.io/spring-integration/docs/5.1.0.M1/reference/html/java-dsl.html
https://docs.spring.io/spring-integration/docs/5.1.0.M1/reference/html/java-dsl.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/pdf/core.pdf
https://docs.spring.io/spring/docs/current/spring-framework-reference/pdf/core.pdf
https://www.amqp.org/
https://swagger.io/
https://swagger.io/
https://www.tibco.com/blog/2019/08/21/tibco-teams-up-with-asyncapi-to-advance-modern-event-driven-apps/
https://www.tibco.com/blog/2019/08/21/tibco-teams-up-with-asyncapi-to-advance-modern-event-driven-apps/
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.reactivemanifesto.org/glossary#Message-Driven
https://www.omg.org/spec/EAI/About-EAI/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://yaml.org/spec/1.2/spec.html

Bibliography

[59] Olaf Zimmermann. Microservice Domain-Specific Language (MDSL)
Homepage. Microservice DSL (MDSL). 2018. url: https : / / github .
com / Microservice - API - Patterns / MDSL - Specification (visited on
06/18/2020).

[60] Olaf Zimmermann et al. “A Decade of Enterprise Integration Patterns:
A Conversation with the Authors.” In: IEEE Software 33 (Jan. 2016),
pp. 13–19. doi: 10.1109/MS.2016.11.

[61] Olaf Zimmermann et al. Microservice API Patterns. microservice-api-
patterns.org. 2016. url: https://microservice-api-patterns.org/ (vis-
ited on 06/03/2020).

82

https://github.com/Microservice-API-Patterns/MDSL-Specification
https://github.com/Microservice-API-Patterns/MDSL-Specification
https://doi.org/10.1109/MS.2016.11
https://microservice-api-patterns.org/

Appendix A

Language Reference

This appendix lists all the supported patterns AsyncMDSL can model, and
their corresponding syntax. The standard MDSL syntax will only be reported
as context information where needed.

AsyncMDSL serviceSpecification

AsyncMDSL supports only a single root object, a serviceSpecification, that
represents the description of a message-based system.� �

1 API description MyServicesSpecification
2 version "1.0.0"
3 usage context PUBLIC_API for FRONTEND_INTEGRATION
4 description "
5 This preamble represent a description of a system.
6 "
7 � �

Listing 51: AsyncMDSL preamble

Properties version, usage context and description are optional.

Version

The version, an optional string value, represents an identifier for the ver-
sion of the current system’s specification. The suggested format follows the
semantic versioning1.

1https://semver.org/

83

https://semver.org/

Appendix A. Language Reference

Foundation Patterns

The usage context — inherited from MDSL — represents the Foundation
Pattern2, and follows the template:

usage context <ctx> [for <direction>]

where ctx can assume one of the following values:

• PUBLIC_API

• COMMUNITY_API

• SOLUTION_INTERNAL_API

• or any string value

and direction

• FRONTEND_INTEGRATION

• BACKEND_INTEGRATION

• or any string value.

Description

The description, an optional string value that supports markdown syntax
when converted to AsyncAPI, is a generic overview of the whole system’s
purpose.

Data types

Standard MDSL’s datatypes, representing Structure Patterns3, can be de-
fined as children of a serviceSpecification, making it possible to reuse them
in all the subsequently modeled channels. MDSL datatypes are introduced
in section 4.1.2.

ChannelContract

Channel contracts represent a single communication channel (a Message
Channel). The shared syntax for Message Channels and Request-Reply Mes-
sage Channels is characterized by the template:

2https://microservice-api-patterns.org/patterns/foundation/
3https://microservice-api-patterns.org/patterns/structure/

84

https://microservice-api-patterns.org/patterns/foundation/
https://microservice-api-patterns.org/patterns/structure/

Appendix A. Language Reference

channel <channelName> [of type <channelType> [, <channelType>]*]

where channelName is a unique name (of type string) that represents the
channel in the current system, and channelType expresses one of the Message
Channel types presented in section 3.1.3. The property channelType can
assume one of the following values:

• POINT_TO_POINT

• PUBLISH_SUBSCRIBE

• DATA_TYPE

• INVALID_MESSAGE

• DEAD_LETTER

• GUARANTEED_DELIVERY

If a channel is of type DEAD_LETTER or INVALID_MESSAGE, other types can
not be supplied. If a channel is POINT_TO_POINT, PUBLISH_SUBSCRIBE can
not be specified, and same applies for the reverse. Others combinations are
considered valid.

OneWayChannel

A OneWayChannel represents a single Message Channel. The syntax matches
the following schema:� �

1 channel <channelName>
2 [of type <channelType> [, <channelType>]*]
3 [description <channelDescription>]
4 on path <channelPath>
5 [with <parameterName: <parameterType>, <parameterDescription>]
6 (accepts | produces | accepts and produces)
7 message <messageName>
8 [description <messageDescription>]
9 (delivering | expecting)
10 [headers <messageHeaders>]
11 payload <messagePayload> [as <messageType>]
12 [where <whereClauses>]
13 [bindings for <channelProtocol> <bindingsObject>]
14 � �

Listing 52: OneWayChannel syntax

85

Appendix A. Language Reference

A OneWayChannel ’s channelPath is a string that represents its logical path.
It uniquely identifies a channel inside a message-based system (and thus
channels can not have duplicates paths). Parameters can be specified in
the path by surrounding their name with ${paramName}, providing a type
and a description (exploiting the with construct). The type of a parameter
(parameterType) can assume one of the following values: bool, int, long,
string or raw.

The channel direction, defined in line 6, indicates if a Message Channel will
be consuming data (accepts), producing data (produces) or both (accepts
and produces). Producing and consuming data in the same channel is pos-
sible but not considered a best practice.

The message direction, defined in line 9, is derived from the above accepts

and produces keywords, and it must be specified accordingly (e.g., if a
channel accepts a message, it will be expecting headers and payload, not
delivering them).

messageHeader and messagePayload (lines 10 and 11) are MDSL’s datatypes
that can be referenced (if already defined) or created as anonymous ob-
jects. The messageType (line 11) can assume one of the following value:
DOCUMENT_MESSAGE, EVENT_MESSAGE or COMMAND_MESSAGE, to express differ-
ent message purposes.

The where construct allows us to represent patterns such as Correlation Iden-
tifier or Message Sequence. Inside this construct three different clauses can
be specified:

• MESSAGE_EXPIRES in <expirationValue> <expirationUnit>, for rep-
resenting Message Expiration. expirationValue is an integer value,
while the expirationUnit can assume m for minutes or s for seconds

• SEQUENCE_ID is <expression>, for representing the Message Sequence.
expression is a string that must follow the JSON Pointer specification,
as described in section 4.3.3.

• CORRELATION_ID is <expression>, for representing Correlation Iden-
tifier. Also in this case the expression is a string that must follow the
JSON Pointer specification.

86

Appendix A. Language Reference

Bindings are the last element of a Message Channel, and allow to specify
protocol-specific information, such as the group identifier in Kafka or the
exchange name in AMQP. Their syntax highly recalls the one from JSON.
The channelProtocol can assume one of the following values:

• MQTT

• Kafka

• AMQP

• STOMP

• HTTP

• JMS_ActiveMQ

• or a string value.

Note that the protocol must be supported by AsyncAPI for a successful
specification generation. A bindingsObject follows the syntax:� �

1 {
2 "<fieldName>": <type>
3 }
4 � �

where fieldName is a string representing the name of the property of the
object, and its type can be:

• a string value (wrapped between double quotes)
• a boolean value (true or false)
• another nested bindingsObject

Request-Reply Channel

A Request-Reply Channel represents a pair of Message Channels, one where
a request message is sent, and another where the reply for the request is sent.
The syntax is:� �

1 channel <channelName>
2 [of type <channelType> [, <channelType>]*]
3 [description <channelDescription>]
4 request message <requestMessageName>
5 [description <requestMessageDescription>]
6 on path <requestChannelPath>
7 [with <parameterName: <parameterType>, <parameterDescription>]
8 expecting
9 [headers <messageHeaders>]

87

Appendix A. Language Reference

10 payload <messagePayload> [as <messageType>]
11 [where <whereClauses>]
12 [bindings for <channelProtocol> <bindingsObject>]
13 reply message <replyMessageName>
14 [description <replyMessageDescription>]
15 on path <replyChannelPath>
16 [with <parameterName: <parameterType>, <parameterDescription>]
17 delivering
18 [headers <messageHeaders>]
19 payload <messagePayload> [as <messageType>]
20 [where <whereClauses>]
21 [bindings for <channelProtocol> <bindingsObject>]
22 � �

Listing 53: Request-Reply Channel syntax

Properties inside the request message and reply message are the same as
the ones for a OneWayChannel, presented above.

Message Brokers

Message Brokers indicate which serviceSpecification they intend to offer to
their clients. A Message Broker follows the syntax:� �

1 message broker <brokerName>
2 [description <brokerDescription>]
3 exposes
4 <serviceSpecification>
5 at location <brokerLocation>
6 via protocol <brokerProtocol>
7 [bindings <bindingsObject>]
8 [policy <securityPolicyName> realized using <securityPolicy>
9 [in <securityPolicyExpression>]]
10 � �

Listing 54: Message Broker syntax

The serviceSpecification is a reference to an existing serviceSpecification
object, tipically the parent of the message broker itself. Referencing a ser-
viceSpecification means that all channels defined in such specification will be
exposed by this broker.

The brokerLocation is a string that allows clients to connect to the broker.
(e.g., the URI where the broker is available amqp://mybroker-location.com).

88

Appendix A. Language Reference

bindingsObject follows the same syantax described in the OneWayChan-
nel above, without the need to specify again the protocol, as for message
brokers it is already defined.

Message brokers can include a simple security policy that indicates to clients
how to authenticate. The securityPolicyName is a string representing the
name of the chosen policy, while securityPolicy can be BASIC_AUTHENITICATION
or API_KEY. If the security policy uses API_KEY as authentication mechanism,
also the securityPolicyExpression must be specified. It represents where
the message broker will find the API key in the message for authenticating
clients. It follows the JSON Pointer specification as defined in section 4.3.3.

Message Endpoints

Message Endpoints are the last type of children of a serviceSpecification. A
Message Endpoint represents a client connected to a broker, and it follows
the syntax:� �

1 message endpoint <messageEndpointName>
2 [of type <msgEndpointType> [, <msgEndpointType>]]
3 [serves as <primaryRole> [, <otherRole>]]
4 [description <msgEndpointDescription>]
5 uses
6 [channels:
7 <channelContract>
8 [where consumed if <leftExp> <operator> <rightExp>]
9 [via protocol <channelProtocol>]
10]
11 [
12 from <messageBroker>:
13 <channelContract>
14 [where consumed if <leftExp> <operator> <rightExp>]
15]� �

Listing 55: Message Ednpoint syntax

A Message Endpoints can be of many types — each representing a different
pattern in [23] — and can assume a combination of the following attributes:

• SELECTIVE_CONSUMER

• DURABLE_SUBSCRIBER

89

Appendix A. Language Reference

• POLLING_CONSUMER

• EVENT_DRIVEN_CONSUMER

• IDEMPOTENT_RECEIVER

• TRANSACTIONAL_CLIENT

• MESSAGING_GATEWAY

• MESSAGING_MAPPER

• COMPETEING_CONSUMER

• MESSAGE_DISPATCHER

• SERRVICE_ACTIVATOR

primaryRole and otherRole, which represent Responsibility patterns4, can
assume one of the following values:

• PROCESSING_RESOURCE

• INFORMATION_HOLDER_RESOURCE

• OPERATIONAL_DATA_HOLDER

• MASTER_DATA_HOLDER

• REFERENCE_DATA_HOLDER

• DATA_TRANSFER_RESOURCE

• LINK_LOOKUP_RESOURCE

• or a string value.

A Message Endpoint can use Message Channels exposed by a Message Broker,
or can directly reference channels defined in a serviceSpecification without
the need to specify an actual Message Broker instance. Channels which are
not consumed from a Message Broker are declared using the channels con-
struct, while the ones referenced from a Message Broker are specified under
the from construct.

A Selective Consumer is defined exploiting the where construct: leftExp

represent a JSON Pointer that will be evaluated at runtime, the operator is
a binary operator (==,<,>,>= or <=) and the rightExp can be another JSON
Pointer (that will be evaluated at runtime too), an integer value or a string.

4https://microservice-api-patterns.org/patterns/responsibility/

90

https://microservice-api-patterns.org/patterns/responsibility/

Appendix B

Loan Broker Conversion

The Loan Broker example, modeled in chapter 5.1, once converted to AsyncAPI
by our generator, will appear as follows:� �

1 asyncapi: '2.0.0'
2 info:
3 title: LoanBrokerExample
4 version: "1.0.0
5 description: |
6 This example models parts of an EIP scenario.
7 See [here](https://www.enterpriseintegrationpatterns.com/
8 patterns/messaging/SystemManagementExample.html)
9 for more info
10 servers:
11 LoanBrokerAmqpProvider:
12 url: amqp.loanbroker.com
13 protocol: AMQP
14 description: No description specified
15 channels:
16 loan-broker/request:
17 subscribe:
18 description: |
19 This channel is used by a customer to make a request.
20

21 Request channel. Reply channel is
22 [LoanReply](#operation-publish-loan-broker/reply)
23 operationId: loanRequest
24 message:
25 $ref: '#/components/messages/LoanRequest'
26 loan-broker/reply:
27 publish:
28 description: |
29 The loan broker will reply to the customer after

91

Appendix B. Loan Broker Conversion

30 having contacted all the banks and found the best quote.
31

32 Reply channel. Request channel is
33 [LoanRequest](#operation-subscribe-loan-broker/request)
34

35 Where:
36 - CORRELATION_ID is "$message.payload#/requestId"
37 - MESSAGE_EXPIRES in 60m
38 operationId: loanReply
39 message:
40 $ref: '#/components/messages/LoanReply'
41 credit-bureau/request:
42 subscribe:
43 description: |
44 Request the credit score and customer history.
45

46 Request channel. Reply channel is
47 [CreditScoreReply](#operation-publish-credit-bureau/reply)
48 operationId: creditScoreRequest
49 message:
50 $ref: '#/components/messages/CreditScoreRequest'
51 credit-bureau/reply:
52 publish:
53 description: |
54 Return the credit score and customer history
55

56 Reply channel. Request channel is
57 [CreditScoreRequest](#operation-subscribe-credit
58 -bureau/request)
59

60 Where:
61 - CORRELATION_ID is "$message.payload#/requestId"
62 operationId: creditScoreReply
63 message:
64 $ref: '#/components/messages/CreditScoreReply'
65 banks/${bankId}/loans/request:
66 parameters:
67 bankId:
68 description: The identifier of the bank to contact
69 schema:
70 type: number
71 subscribe:
72 description: |
73 Request a loan proposal
74

92

Appendix B. Loan Broker Conversion

75 Request channel. Reply channel is
76 [LoanProposalReply](#operation-publish-banks
77 /${bankId}/loans/reply)
78 operationId: loanProposalRequest
79 message:
80 $ref: '#/components/messages/LoanProposalRequest'
81 banks/${bankId}/loans/reply:
82 parameters:
83 bankId:
84 description: |
85 The identifier of the bank that replied
86 schema:
87 type: number
88 publish:
89 description: |
90 The loan proposal for the given customer
91

92 Reply channel. Request channel is
93 [LoanProposalRequest](#operation-subscribe-banks
94 /${bankId}/loans/request)
95

96 operationId: loanProposalReply
97 message:
98 $ref: '#/components/messages/LoanProposalReply'
99 banks/${bankId}/loans:

100 parameters:
101 bankId:
102 description: |
103 The bank from which the loan has been requested.
104 schema:
105 type: number
106 publish:
107 description: |
108 Subscribe to be notified when a new loan request happens.
109

110 One way channel (does not expect reply).
111 operationId: newLoanRequested
112 message:
113 $ref: '#/components/messages/NewLoanRequested'
114 components:
115 messages:
116 NewLoanRequested:
117 name: NewLoanRequested
118 title: New Loan Requested
119 description: |

93

Appendix B. Loan Broker Conversion

120 No description specified
121 payload:
122 type: object
123 required:
124 - timestamp
125 properties:
126 timestamp:
127 type: string
128 LoanRequest:
129 name: LoanRequest
130 title: Loan Request
131 description: |
132 This channel is used by a customer to make a request.
133

134 Request message. Reply message is *LoanReply*.
135 payload:
136 $ref: '#/components/schemas/LoanRequestDto'
137 LoanReply:
138 name: LoanReply
139 title: Loan Reply
140 description: |
141 The loan broker will reply to the customer
142 after having contacted all the
143 banks and found the best quote.
144

145 Reply message. Request message is *LoanRequest*.
146 correlationId:
147 location: '$message.payload#/requestId'
148 payload:
149 $ref: '#/components/schemas/LoanReplyDto'
150 headers:
151 unnamedParameter4:
152 $ref: '#/components/schemas/CommonHeaders'
153 CreditScoreRequest:
154 name: CreditScoreRequest
155 title: Credit Score Request
156 description: |
157 Request the credit score and customer history.
158

159 Request message. Reply message is *CreditScoreReply*.
160 payload:
161 $ref: '#/components/schemas/CreditBureauRequestDto'
162 headers:
163 unnamedParameter5:
164 $ref: '#/components/schemas/CommonHeaders'

94

Appendix B. Loan Broker Conversion

165 CreditScoreReply:
166 name: CreditScoreReply
167 title: Credit Score Reply
168 description: |
169 Return the credit score and customer history
170

171 Reply message. Request message is *CreditScoreRequest*.
172 correlationId:
173 location: '$message.payload#/requestId'
174 payload:
175 $ref: '#/components/schemas/CreditBureauReplyDto'
176 LoanProposalRequest:
177 name: LoanProposalRequest
178 title: Loan Proposal Request
179 description: |
180 Request a loan proposal
181

182 Request message. Reply message is *LoanProposalReply*.
183

184 payload:
185 $ref: '#/components/schemas/BankLoanRequest'
186 LoanProposalReply:
187 name: LoanProposalReply
188 title: Loan Proposal Reply
189 description: |
190 The loan proposal for the given customer
191

192 Reply message. Request message is *LoanProposalRequest*.
193 payload:
194 $ref: '#/components/schemas/BankLoanReply'
195 schemas:
196 LoanRequestDto:
197 type: object
198 required:
199 - socialSecurityNumber
200 - amount
201 - termInMonths
202 - requestId
203 properties:
204 socialSecurityNumber:
205 type: number
206 amount:
207 type: number
208 termInMonths:
209 type: number

95

Appendix B. Loan Broker Conversion

210 requestId:
211 type: number
212 LoanReplyDto:
213 type: object
214 required:
215 - quoteId
216 - interestRate
217 - requestId
218 properties:
219 quoteId:
220 type: number
221 interestRate:
222 type: number
223 requestId:
224 type: number
225 CreditBureauRequestDto:
226 type: object
227 required:
228 - socialSecurityNumber
229 - requestId
230 properties:
231 socialSecurityNumber:
232 type: number
233 requestId:
234 type: number
235 CreditBureauReplyDto:
236 type: object
237 required:
238 - socialSecurityNumber
239 - creditScore
240 - requestId
241 properties:
242 socialSecurityNumber:
243 type: number
244 creditScore:
245 type: number
246 creditHistory:
247 type: array
248 items:
249 type: object
250 properties:
251 additionalProperties:
252 type: string
253 requestId:
254 type: number

96

Appendix B. Loan Broker Conversion

255 BankLoanRequest:
256 type: object
257 required:
258 - creditScore
259 - creditHistoryLength
260 - requestId
261 properties:
262 creditScore:
263 type: number
264 creditHistoryLength:
265 type: number
266 requestId:
267 type: number
268 BankLoanReply:
269 type: object
270 required:
271 - quoteId
272 - interestRate
273 - requestId
274 properties:
275 quoteId:
276 type: number
277 interestRate:
278 type: number
279 requestId:
280 type: number
281 CommonHeaders:
282 type: object
283 required:
284 - brokerId
285 properties:
286 brokerId:
287 type: number� �

Listing 56: Loan Broker example converted to AsyncAPI

If we run the async-api-generator1 specifying as input the content shown
in Listing 56 and using the html-template2, we obtain a static website for
documentation purposes, as illustrated in Figure 7.

1https://github.com/asyncapi/generator
2https://github.com/asyncapi/html-template

97

https://github.com/asyncapi/generator
https://github.com/asyncapi/html-template

Appendix B. Loan Broker Conversion

Figure 7: AsyncAPI documentation generation for the Loan Broker example

98

	Introduction
	Context
	Vision
	Terminology

	Related Work
	Academic Literature
	Existing Modeling Frameworks
	Apache Camel
	AsyncAPI

	Requirements
	User Stories
	US-1: Model a message-based system
	US-2: Integrate with AsyncAPI
	US-3: Message Channels
	US-4: Messages
	US-5: Return Address
	US-6: Correlation Identifier
	US-7: Message Sequence
	US-8: Message Expiration
	US-9: Message Endpoints
	US-10: Competing Consumers
	US-11: Polling Consumer
	US-12: Event-Driven Consumer
	US-13: Selective Consumer
	US-14: Durable Subscriber
	US-15: Message Brokers
	US-16: Specify protocol-specific information
	US-17: Server security

	Non-functional Requirements
	NFR-1: Usability
	NFR-2: Expressiveness
	NFR-3: Reliability
	NFR-4: Specification's complexity
	NFR-5: AsyncAPI conversion time
	NFR-6: Maintainability and supportability
	NFR-7: License

	Language Design and Tool Implementation
	Background: Standard MDSL Language
	Language elements
	Data types
	Endpoint skeleton
	Provider skeleton
	Client skeleton

	AsyncMDSL Language
	AsyncMDSL example

	AsyncMDSL Language Features
	Extending a grammar
	ServiceSpecification
	ChannelContract
	Message Brokers
	Message Endpoints

	Static Verification Rules (linter)
	Generating AsyncAPI
	MDSL data types to JSON Schema specification
	AsyncMDSL to AsyncAPI mapping

	Loan Broker Example
	Modeling a scenario

	Discussion
	AsyncMDSL and AsyncAPI
	Missing features
	Specifications comparison
	AsyncMDSL design

	Requirements Evaluation
	Requirements coverage

	Conclusions
	Future Work

	Bibliography
	Appendices
	Language Reference
	Loan Broker Conversion

